Detection of Snore from OSAHS Patients Based on Deep Learning

المؤلفون المشاركون

Cheng, Siyi
Dai, Lili
Li, Zhu
Yue, Keqiang
Shen, Fanlin
Li, Wenjun

المصدر

Journal of Healthcare Engineering

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-10، 10ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-12-12

دولة النشر

مصر

عدد الصفحات

10

الموضوع الرئيسي

الصحة العامة
الطب البشري

الملخص EN

Obstructive sleep apnea-hypopnea syndrome (OSAHS) is extremely harmful to the human body and may cause neurological dysfunction and endocrine dysfunction, resulting in damage to multiple organs and multiple systems throughout the body and negatively affecting the cardiovascular, kidney, and mental systems.

Clinically, doctors usually use standard PSG (Polysomnography) to assist diagnosis.

PSG determines whether a person has apnea syndrome with multidimensional data such as brain waves, heart rate, and blood oxygen saturation.

In this paper, we have presented a method of recognizing OSAHS, which is convenient for patients to monitor themselves in daily life to avoid delayed treatment.

Firstly, we theoretically analyzed the difference between the snoring sounds of normal people and OSAHS patients in the time and frequency domains.

Secondly, the snoring sounds related to apnea events and the nonapnea related snoring sounds were classified by deep learning, and then, the severity of OSAHS symptoms had been recognized.

In the algorithm proposed in this paper, the snoring data features are extracted through the three feature extraction methods, which are MFCC, LPCC, and LPMFCC.

Moreover, we adopted CNN and LSTM for classification.

The experimental results show that the MFCC feature extraction method and the LSTM model have the highest accuracy rate which was 87% when it is adopted for binary-classification of snoring data.

Moreover, the AHI value of the patient can be obtained by the algorithm system which can determine the severity degree of OSAHS.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Shen, Fanlin& Cheng, Siyi& Li, Zhu& Yue, Keqiang& Li, Wenjun& Dai, Lili. 2020. Detection of Snore from OSAHS Patients Based on Deep Learning. Journal of Healthcare Engineering،Vol. 2020, no. 2020, pp.1-10.
https://search.emarefa.net/detail/BIM-1186567

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Cheng, Siyi…[et al.]. Detection of Snore from OSAHS Patients Based on Deep Learning. Journal of Healthcare Engineering No. 2020 (2020), pp.1-10.
https://search.emarefa.net/detail/BIM-1186567

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Shen, Fanlin& Cheng, Siyi& Li, Zhu& Yue, Keqiang& Li, Wenjun& Dai, Lili. Detection of Snore from OSAHS Patients Based on Deep Learning. Journal of Healthcare Engineering. 2020. Vol. 2020, no. 2020, pp.1-10.
https://search.emarefa.net/detail/BIM-1186567

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1186567