Mild Hypothermia Attenuates Hepatic Ischemia–Reperfusion Injury through Regulating the JAK2STAT3-CPT1a-Dependent Fatty Acid β-Oxidation

المؤلفون المشاركون

Ye, Qi-Fa
Liu, Zhongzhong
Ye, Shaojun
Zhong, Zibiao
Wang, Yanfeng
Wang, Wei
Hu, Xiaoyan
Xia, Zhiping
Lu, Zhongshan
Liu, Anxiong
Cao, Qin
Zhu, Fan

المصدر

Oxidative Medicine and Cellular Longevity

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-16، 16ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-03-20

دولة النشر

مصر

عدد الصفحات

16

التخصصات الرئيسية

الأحياء

الملخص EN

Hepatic ischemia–reperfusion (IR) injury is a clinical issue that can result in poor outcome and lacks effective therapies at present.

Mild hypothermia (32–35°C) is a physiotherapy that has been reported to significantly alleviate IR injury, while its protective effects are attributed to multiple mechanisms, one of which may be the regulation of fatty acid β-oxidation (FAO).

The aim of the present study was to investigate the role and underlying mechanisms of FAO in the protective effects of mild hypothermia.

We used male mice to establish the experimental models as previously described.

In brief, before exposure to in situ ischemia for 1 h and reperfusion for 6 h, mice received pretreatment with mild hypothermia for 2 h and etomoxir (inhibitor of FAO) or leptin (activator of FAO) for 1 h, respectively.

Then, tissue and blood samples were collected to evaluate the liver injury, oxidative stress, and changes in hepatic FAO.

We found that mild hypothermia significantly reduced the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury.

In addition, the expression of the rate-limiting enzyme (CPT1a) of hepatic FAO was downregulated almost twofold by IR, while this inhibition could be significantly reversed by mild hypothermia.

Experiments with leptin and etomoxir confirmed that activation of FAO could also reduce the hepatic enzyme levels and the score of hepatic pathological injury, hepatocyte apoptosis, oxidative stress, and mitochondrial injury induced by IR, which had the similar effects to mild hypothermia, while inhibition of FAO had negative effects.

Furthermore, mild hypothermia and leptin could promote the phosphorylation of JAK2/STAT3 and upregulate the ratio of BCL-2/BAX to suppress hepatocyte apoptosis.

Thus, we concluded that FAO played an important role in hepatic IR injury and mild hypothermia attenuated hepatic IR injury mainly via the regulation of JAK2/STAT3-CPT1a-dependent FAO.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Wang, Wei& Hu, Xiaoyan& Xia, Zhiping& Liu, Zhongzhong& Zhong, Zibiao& Lu, Zhongshan…[et al.]. 2020. Mild Hypothermia Attenuates Hepatic Ischemia–Reperfusion Injury through Regulating the JAK2STAT3-CPT1a-Dependent Fatty Acid β-Oxidation. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1204959

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Wang, Wei…[et al.]. Mild Hypothermia Attenuates Hepatic Ischemia–Reperfusion Injury through Regulating the JAK2STAT3-CPT1a-Dependent Fatty Acid β-Oxidation. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1204959

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Wang, Wei& Hu, Xiaoyan& Xia, Zhiping& Liu, Zhongzhong& Zhong, Zibiao& Lu, Zhongshan…[et al.]. Mild Hypothermia Attenuates Hepatic Ischemia–Reperfusion Injury through Regulating the JAK2STAT3-CPT1a-Dependent Fatty Acid β-Oxidation. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1204959

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1204959