* – Connectedness in Intuitionistic Fuzzy Ideal Bitopological spaces

Alaa saleh Abed
University of kufa
Faculty of Education for Girls,
Department of Mathematics
Alaas.abed@uokufa.edu.iq

Abstract:

In This paper we introduce the nation of *– Connectedness in Intuitionistic Fuzzy Ideal Bitopological Space . we obtain several properties of *– Connectedness in Intuitionistic Fuzzy Ideal Bitopological spaces and the relationship between this notion and other related notions.

Keywords:

Intuitionistic Fuzzy Ideal Bitopological Spaces ,
Pairwise *– Connected intuitionistic fuzzy sets ,
Pairwise *– Separated intuitionistic fuzzy sets ,
Pairwise *– Connected intuitionistic fuzzy Ideal Bitopological Space

Kelly introduced the concept of "bitopological space" as extension of topological space [4] in 1963.
Mohammed (2015) introduced the notion of "intuitionistic fuzzy ideal bitopological space" [9].

The purpose of this paper is to introduce and study the notion of "\(*\) – connectedness in intuitionistic fuzzy ideal bitopological space". We study the notion of "pairwise \(*\) – connected intuitionistic fuzzy ideal bitopological space".

2. Preliminaries:

Definition 2.1. [7]:-
Let X be a non–empty set and I = [0, 1] be the closed interval of the real numbers. A fuzzy subset \(\mu \) of X is defined to be membership function \(\mu : X \rightarrow I \), such that \(\mu (x) \in I \) for every \(x \in X \). The set of all fuzzy subsets of X denoted by \(I^X \).

Definition 2.2 [5]:-
An intuitionistic fuzzy set (IFs, for short) A is an object have the form:
\[A = \{ x, \mu_A(x), \nu_A(x) > ; x \in X \} \], where the functions \(\mu_A : X \rightarrow I \), \(\nu_A : X \rightarrow I \) denote the degree of membership and the degree of non–membership of each element \(x \in X \) to the set A respectively, and \(0 \leq \mu_A(x) + \nu_A(x) \leq 1 \), for each \(x \in X \). The set of all intuitionistic fuzzy sets in X denoted by IFS (x).

Definition 2.3. [3]:-
\(0_\sim = (< x, 0, 1 >) \), \(1_\sim = (< x, 1, 0 >) \) are the intuitionistic sets corresponding to empty set and the entire universe respectively.
Definition 2.4. [2] :-

Let X be a non-empty set. An intuitionistic fuzzy point (IFP, for short) denoted by $x_{(\alpha, \beta)}$ is an intuitionistic fuzzy set have the form

$$x_{(\alpha, \beta)}(y) = \begin{cases} < x, \alpha, \beta > & ; \ x = y \\ < x, 0,1 > & ; \ x \neq y \end{cases},$$

where $x \in X$ is a fixed point, and $\alpha, \beta \in [0,1]$ satisfy $\alpha + \beta \leq 1$. The set of all IFPs denoted by IFP(x). If \in IFs(x). We say the $x_{(\alpha, \beta)} \in \ A$ if and only if $\alpha \leq \mu_A(x)$ and $\beta \geq \nu_A(x)$, for each $x \in X$.

Definition 2.5. [2] :-

Let $\mu_A(x), \nu_A(x) \mu_B(x), \nu_B(x)$ be two intuitionistic fuzzy sets in X. A is said to be quasi-coincident with B (written AqB) if and only if, there exists an element $x \in X$ such that $\mu_A(x) > \nu_B(x)$ or $\nu_A(x) < \mu_B(x)$, otherwise A is not quasi-coincident with B and denoted by $\tilde{A}qB$.

Definition 2.6. [2] :-

Let $x_{(\alpha, \beta)} \in$ IFP(X) and \in IFs(X). We say that $x_{(\alpha, \beta)}$ quasi-coincident with A denoted $x_{(\alpha, \beta)}qA$ if and only if, $\alpha > \nu_A(x)$ or $\beta < \mu_A(x)$, otherwise $x_{(\alpha, \beta)}$ is not quasi-coincident with A and denoted by $x_{(\alpha, \beta)}\tilde{q}A$.

Definition 2.7. [2] :-

Let $x_{(\alpha, \beta)}$ be an intuitionistic fuzzy point in X and $A = \{< x, \mu_A(x), \nu_A(x) >, \ x \in X \}$ an IFS in X. Suppose further α and β are real numbers between 0 and 1. The intuitionistic fuzzy point $x_{(\alpha, \beta)}$ is said to be properly contained in A if and only if, $\alpha < \mu_A(x)$ and $\beta > \nu_A(x)$.
Definition 2.8.[2] :-
An intuitionistic fuzzy point \(x_{(\alpha, \beta)} \) is said to be belong to an intuitionistic fuzzy set \(A \) in \(X \), denoted by \(x_{(\alpha, \beta)} \in A \) if \(\alpha \leq \mu_A(x) \) and \(\beta \geq \nu_A(x) \).

Proposition 2.9. [3] :-
Let \(A, B \) be IFSs and \(x (\alpha, \beta) \) an IFP in \(X \). Then
1- \(A \sqsupseteq B \iff A \subseteq B \)
2- \(A \sqsubseteq B \iff A \subseteq B^c \),
3- \(x_{(\alpha, \beta)} \in A \iff x_{(\alpha, \beta)} \in A^c \),
4- \(x_{(\alpha, \beta)} \notin A \iff x_{(\alpha, \beta)} \notin A^c \).

Proposition 2.10. [8] :-
For \(A, B \in \text{IFS} \) and \(x_{(\alpha, \beta)} \in \text{IFP} (X) \), we have:
\[A \sqsubseteq B \ \text{if and only if} \ \text{for} \ x_{(\alpha, \beta)} \in A \ \text{then} \ x_{(\alpha, \beta)} \in B \]
\[\text{ii} - A \sqsubseteq B \ \text{if and only if} \ \text{for} \ x_{(\alpha, \beta)} \notin A \ \text{then} \ x_{(\alpha, \beta)} \notin B \]

Lemma 2.11. [10] :-
Let \(A, B \) and \(C \) be intuitionistic fuzzy sets. If \(q(A \cup B) \), then \(C \sqsupseteq A \) or \(C \sqsupseteq B \).

Definition 2.12. [3] :-
An intuitionistic fuzzy topology (IFT, for short) on a non empty set \(X \) is a family \(\tau \) of an intuitionistic fuzzy set in \(X \) such that
\[(i) \ 0_\infty, 1_\infty \in \tau , \]
\[(ii) \ G_1 \cap G_2 \in \tau \ , \text{for any} \ G_1, G_2 \in \tau , \]
\[(iii) \ \cup \ G_i \in \tau \ , \text{for any arbitrary family} \ \{ G_i : i \in I \} \subseteq \tau . \]
In this case the pair \((X, \tau) \) is called an intuitionistic fuzzy topological space (IFTS, in short).
Definition 2.13. [3] :-

Let \((X, \tau)\) be an intuitionistic fuzzy topological space and
\[A = \{<x, \mu_A(x), \nu_A(x)>, \ x \in X\} \]
be an intuitionistic fuzzy set in \(X\) then , an intuitionistic fuzzy interior and intuitionistic fuzzy closure of \(A\) are respectively defined by
\[\text{int} (A) = A^\circ = \bigcup \{G : G \text{ is an IFOS in } X \text{ and } G \subseteq A\} \]
\[\text{cl} (A) = \overline{A} = \bigcap \{K : K \text{ is an IFCS in } X \text{ and } A \subseteq K\}. \]

A non–empty collection of intuitionistic fuzzy sets \(L\) of a set \(X\) is called intuitionistic fuzzy ideal on \(X\) (IFI, for short) such that :

1. If \(A \in L\) and \(B \subseteq A \Rightarrow B \in L\) (heredity)
2. If \(A \in L\) and \(B \in L \Rightarrow A \cup B \in L\) (finite additivity). If \((X, \tau)\) be an IFTS , then the triple \((X, \tau, L)\) is called an intuitionistic fuzzy ideal topological space (IFITS, for short).

Definition 2.15. [1] :-

Let \((X, \tau, L)\) be an IFITS. If \(\in \text{ IFS}(X)\). Then the intuitionistic fuzzy local function \(A^*(L, \tau)\) (\(A^*\), for short) of \(A\) in \((X, \tau, L)\) is the union of all intuitionistic fuzzy points \(x_{(\alpha, \beta)}\) such that:

\[A^*(L, \tau) = \bigvee \{x_{(\alpha, \beta)} : A \cap U \notin L\}, \text{ for every } e \in \text{ IFS}(x_{(\alpha, \beta)}, \tau) \}, \text{ where } \]
\[\text{N}(x_{(\alpha, \beta)}, \tau) \] is the set of all quasi–neighborhoods of an IFP \(x_{(\alpha, \beta)}\) in \(\tau\).

The intuitionistic fuzzy closure operator of an IFS \(A\) is defined by
\[\text{cl}^*(A) = A \cup A^*\], and \(\tau^*(L)\) is an IFT finer than \(\tau\) generated \(\text{cl}^*(\cdot)\) and defined as
\[\tau^*(L) = \{A : \text{cl}^*(A^C) = A^C\}. \]
Lemma 2.16. [8] :-
Let \((X, \tau, L)\) be an IFITS and \(B \subseteq A \subseteq X\). Then
\[
B^*(\tau_A, L_A) = B^*(\tau, L) \cap A.
\]

Lemma 2.17. [8] :-
Let \((X, \tau, L)\) be an IFITS and \(B \subseteq A \subseteq X\). Then
\[
\text{cl}^*_{A}(B) = \text{cl}^*(B) \cap A.
\]

Definition 2.18. [8] :-
An intuitionistic fuzzy set (IFS) \(A\) of intuitionistic fuzzy ideal topological space \((X, \tau, L)\) is said to be *-dense if \(\text{cl}^*(A) = X\).

An intuitionistic fuzzy ideal topological space \((X, \tau, L)\) is said to be *-hyperconnected if IFS \(A\) is *-dense for every IF open subset \(A \neq \emptyset\) of \(X\).

Lemma 2.19. [8] :-
Let \((X, \tau, L)\) be an IFITS for each \(v \in \tau^*, \tau^*_v = (\tau_v)^*\).

Lemma 2.20. [8] :-
Let \((X, \tau, L)\) be an IFITS, \(A \subseteq Y \subseteq X\) and \(Y \in \tau\). The following are equivalent
(1) \(A\) is *-IF open in \(Y\), (2) \(A\) is *-IF open in \(X\).

Proof :- (1) \(\Rightarrow\) (2) let \(A\) be *-IF open in \(Y\). Since \(Y \in \tau \subseteq \tau^*\), by lemma (2.19), \(A\) is *-IF open in \(X\).

Let \(A\) be *-IF open in \(X\). By lemma (2.19), \(A = A \cap Y\) is *-IF open in \(X\). (2) \(\Rightarrow\) (1).

Definition 2.21. [8] :-
Two non empty intuitionistic fuzzy sets \(A\) and \(B\) of an intuitionistic fuzzy ideal topological space \((X, \tau, L)\) are said to be intuitionistic fuzzy...
* separated sets (IF * separated sets, for short) if cl*(A) ∩ B and A ∩ cl(B).

Definition 2.22. [8] :-

An intuitionistic fuzzy set E in intuitionistic fuzzy ideal topological space (X, τ, L) is said to be intuitionistic fuzzy * connected if it cannot be expressed as the Union of two intuitionistic fuzzy * separated sets. Otherwise, E is said to be intuitionistic fuzzy * disconnected.

If = X, then X is said to be intuitionistic fuzzy * connected space.

Definition 2.23. [8] :-

Let τ₁ and τ₂ be two intuitionistic fuzzy topologies on a non-empty set X. The Triple (X, τ₁, τ₂) is called an intuitionistic fuzzy bitopological space (IFBTS, for short), every member of τᵢ is called τᵢ intuitionistic fuzzy open set (τᵢ IFOS), i ∈ {1, 2} and the complement of τᵢ IFOS is τᵢ intuitionistic fuzzy closed set (τᵢ IFCS), i ∈ {1, 2}.

Example 2.24.[8] :-

Let X = {e, d} and A, B ∈ IFS(X) such that

X =< x, (0.3, 0.1), (0.5, 0.6) >,
B =< x, (0.2, 0.4), (0.7, 0.3) >. Let τ₁ = {0₁, 1₁, A} and τ₂ = {0₂, 1₂, B} be two IFTS on X. Then (X, τ₁, τ₂) is IFBTS.

Definition 2.25.[8] :-

Let (X, τ₁, τ₂) be an IFBTS, A ∈ IFS(X) and x_(α, β) ∈ IFP(X). Then A is said to be quasi-neighborhood of x_(α, β) if there exists a τᵢ IFOS B, i ∈ {1, 2} such that x_(α, β) ∩ B ⊆ A. The set of all quasi –
Definition 2.26. [8] :

An intuitionistic fuzzy bitopological space \((X, \tau_1, \tau_2)\) with an intuitionistic fuzzy ideal \(L\) on \(X\) is called intuitionistic fuzzy ideal bitopological space \((X, \tau_1, \tau_2, L)\) and denoted by IFLBTS

Example 2.27. [8] :

Let \(X = \{e\}\) and \(A, B \in IFS(X)\) such that \(= \langle X, 0.3, 0.5 \rangle\), \(B = \langle X, 0.2, 0.4 \rangle\). Let \((X, \tau_1, \tau_2)\) be an IFLBTS, where \(\tau_1 = \{0_-, 1_-, A\}\) and \(\tau_2 = \{0_-, 1_-, B\}\). If \(L = \{0_-, A, C : C \in IFS(X)\) and \(C \leq A\}\) be an IFL on \(X\). Then \((X, \tau_1, \tau_2)\) is IFLBTS.

Definition 2.28. [8] :

Let \((X, \tau_1, \tau_2, L)\) be an IFLBTS and \(\in IFS(X)\). Then the intuitionistic fuzzy local function of \(A\) in \((x, \tau_1, \tau_2, L)\) denoted by \(A^*(L, \tau_i)\), \(i \in \{1, 2\}\) and defined by as follows:

\[A^*(L, \tau_i) = \bigvee \{x(\alpha, \beta) : A \land U \notin L, \text{ for every } \in N(x(\alpha, \beta), \tau_i)\}, i \in \{1, 2\}\]

Definition 2.29. [8] :

Let \((X, \tau_1, \tau_2)\) be an IFBTS and \(\in IFS(X)\). Then intuitionistic fuzzy interior and intuitionistic fuzzy cloure of \(A\) with respect to \(\tau_i, i \in \{1, 2\}\) are defined by:

\[\tau_i \ominus \text{int } (A) = \bigvee \{G : G \text{ is a } \tau_i \ominus \text{IFOS}, G \leq A\}\]

\[\tau_i \ominus \text{cl } (A) = \bigwedge \{K : K \text{ is a } \tau_i \ominus \text{IFCS}, A \leq K\}\]

Proposition 2.30. [8] :

Let \((X, \tau_1, \tau_2)\) be an IFBTS and \(\in IFS(X)\). Then we have:

www.Jutq.utq.edu.iq Web Site of the Journal
(i) $\tau_i - \text{int}(A) \leq A, i \in \{1, 2\}$

(ii) $\tau_i - \text{int}(A)$ is a largest $\tau_i - \text{IFOS}$ contains in A

(iii) A is a $\tau_i - \text{IFOS}$ if and only if $\tau_i - \text{int}(A) = A$

(iv) $\tau_i - \text{int}(\tau_i - \text{int}(A)) = \tau_i - \text{int}(A)$.

(v) $A \leq \tau_i - \text{cl}(A), i \in \{1, 2\}$.

(vi) $\tau_i - \text{cl}(A)$ is smallest $\tau_i - \text{IFCS}$ contains A.

(vii) A is a $\tau_i - \text{IFCS}$ if and only if $\tau_i - \text{cl}(A) = A$.

(viii) $\tau_i - \text{cl}(\tau_i - \text{cl}(A)) = \tau_i - \text{cl}(A)$

(ix) $[\tau_i - \text{int}(A)]^c = \tau_i = \text{cl}(A^c), i \in \{1, 2\}$.

(x) $[\tau_i - \text{cl}(A)]^c = \tau_i = \text{int}(A^c), i \in \{1, 2\}$.

Definition 2.31. [8] :-

We define $* -$ intuitionistic fuzzy closure operator for intuitionistic fuzzy bitopology $\tau_i^*(L)$ as follows:

$\tau_i - \text{cl}^*(A) = A \vee A^*(L, \tau_i)$ for every $A \in \tau_i - \text{IFS}(X)$. Also, $\tau_i^*(L)$ is called an intuitionistic fuzzy bitopology generated by $\tau_i - \text{cl}^*(A)$ and defined as:

$\tau_i^*(L) = \{A : \tau_i - \text{cl}^*(A^c) = A^c, i \in \{1, 2\}\}$.

Note: $\tau_i^*(L)$ finer than intuitionistic fuzzy bitopology τ_i , (i . e $\tau_i \leq \tau_i^*(L)$).

Remark 2.32. [8] :-

(i) If $L = \{0_\sim\} \Rightarrow A^*(L, \tau_i) = \tau_i - \text{cl}(A)$, for any $A \in \text{IFS}(X)$

$\Rightarrow \tau_i - \text{cl}^*(A) = A \vee A^*(L, \tau_i) = A \vee \tau_i - \text{cl}(A) = \tau_i - \text{cl}(A)$

$\Rightarrow \tau_i^*(\{0_\sim\}) = \tau_i, i \in \{1, 2\}$.

(ii) If $L = \text{IFS}(X) \Rightarrow A^*(L, \tau_i) = 0_\sim$, for any $A \in \text{IFS}(X)$

$\Rightarrow \tau_i - \text{cl}^*(A) = A \vee A^*(L, \tau_i) = A \vee 0_\sim = A$

$\Rightarrow \tau_i^*(L)$ is the intuitionistic fuzzy discrete bitopology on X.
3. Main Results

3.1 * − Connectedness in Intuitionistic fuzzy Ideal Bitopological Spaces

Definition 3.1.1 :-

Two non empty τ_i − intuitionistic fuzzy sets A and B of an intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L), $i \in \{1,2\}$, are said to be intuitionistic fuzzy $*-$ separated sets $(\tau_i \text{− IF } *-$ separated sets , for short) , $i \in \{1,2\}$ if

$\tau_1 - cl^* (A) \bar{q} B$ and $A \bar{q} \tau_1 - cl (B)$

Proposition 3.1.2 :-

Let A and B be an τ_i − intuitionistic fuzzy $*-$separated sets in IFLBT (X, τ_1, τ_2, L), A, B are two non empty τ_i − intuitionistic fuzzy $*-$separated sets such that $A_1 \leq A$ and $B_1 \leq B$ then A_1 and B_1 are τ_i − intuitionistic fuzzy $*-$separated sets in X, $i \in \{1,2\}$.

Proof :-

Since $A_1 \leq A$ and $B_1 \leq B$, we have

$\tau_i - cl^* (A_1) \leq \tau_i - cl^* (A)$ and $\tau_i - cl(B_1) \leq \tau_i - cl(B)$, Since A, B are τ_i − intuitionistic fuzzy $*-$separated then ,

$\tau_i - cl^*(A) \bar{q} B$ and $\bar{q} \tau_i - cl (B)$, $i \in \{1,2\}$

Therefore $\tau_i - cl^*(A) \bar{q} B$ we get $\tau_i - cl^*(A_1) \bar{q} B_1$

And $\bar{q} \tau_i - cl (B)$, and also we get $A_1 \bar{q} \tau_i - cl(B_1)$, $i \in \{1,2\}$

Then A_1 and B_1 are τ_i − IF $*-$separated.

Theorem 3.1.3 :-

Let A be τ_i − intuitionistic fuzzy open set $(\tau_i$ − IFOS) , $i \in \{1,2\}$ and B be $*-$ τ_i − intuitionistic fuzzy open set in intuitionistic fuzzy ideal
Proof:

(⇒) suppose that \(A \cap B \), then exists an element \(x \in X \) such that \(\mu_A(x) > v_B(x) \) or \(v_A(x) < \mu_B(x) \), and since \(A \subseteq \tau_i - \text{cl}^*(A) \) and \(\subseteq \tau_i - \text{cl}(B) \), \(i = \{1,2\} \)
This implies \(\mu_{\tau_i-\text{cl}^*(A)}(x) > v_B(x) \) or \(v_{\tau_i-\text{cl}^*(A)}(x) < \mu_B(x) \)
And \(\mu_A(x) > v_{\tau_i-\text{cl}(B)}(x) \) or \(v_A(x) < \mu_{\tau_i-\text{cl}(B)}(x) \), \(i \in \{1,2\} \)
Then \(\tau_i - \text{cl}^*(A) \cap B \) and \(A \cap \tau_i - \text{cl}(B) \), \(i \in \{1,2\} \)
This is contradiction. Hence \(A \cap B \).

(⇐) Suppose that \(A \cap B \).
By proposition (2.9), we have \(A \subseteq B^c \)
Since \(B^c \) is \(\tau_i - \text{intuitionistic fuzzy closed set} \), \(i \in \{1,2\} \)
Therefore, \(\tau_i - \text{cl}^*(A) \leq \tau_i - \text{cl}^*(B^c) = B^c \), \(i \in \{1,2\} \) → \(\tau_i - \text{cl}^*(A) \leq B^c \)
Hence by proposition (2.9), we get \(\tau_i - \text{cl}^*(A) \cap (B^c)^c \).
Then \(\tau_i - \text{cl}^*(A) \cap \cdot \) → (1)
Let \(\leq B^c \), since \(B^c \) is \(\ast - \text{IFCS in X} \).
Therefore, \(\tau_i - \text{cl}(A) \leq \tau_i - \text{cl}(B^c) = B^c \), \(i \in \{1,2\} \)
Hence by proposition (2.9), we have \(\tau_i - \text{cl}(A) \cap (B^c)^c \), then \(\tau_i - \text{cl}(A) \cap \cdot \)
Since \(A \subseteq \tau_i - \text{cl}(A) \) and \(\subseteq \tau_i - \text{cl}(B) \), \(i \in \{1,2\} \)
Thus \(A \cap \tau_i - \text{cl}(B) \)...(2)
From (1) and (2) we get \(A \) and \(B \) are \(\tau_i - \text{IF} \ast - \text{separated sets in X} \).
Proposition 3.1.4 :-

Let A be an $\ast -\tau_i -\text{IFCS}$ and B is an $\tau_i -\text{IFCS}$, $i \in \{1,2\}$ in intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L).

Then A and B are $\tau_i -\text{IF} \ast -\text{Separted sets in X if and only if } qB$.

Proof :-

(\Rightarrow) suppose that A, B are $\tau_i -\text{IF} \ast -\text{separated sets in X}$.

$\Rightarrow \tau_i - cl^*(A)qB \text{ and } q\tau_i - cl(B)$, $i \in \{1,2\}$

Since A is $\ast -\tau_i -\text{IFCS}$, then $\tau_i - cl^*(A) = A$, $i \in \{1,2\}$, we get AqB

(\Leftarrow) Suppose that AqB

Since A is $\ast -\tau_i -\text{IFCS}$ and B is $\tau_i -\text{IFCS}$, $i \in \{1,2\}$

Therefore , $\tau_i - cl^*(A) = A$ and $\tau_i - cl(B) = B$, $i \in \{1,2\}$

We get $\tau_i - cl^*(A)qB$ and $Aq\tau_i - cl(B)$

Hence A, B are $\tau_i -\text{IF} \ast -\text{separated sets in X}$.

Definition 3.1.5 :-

An $\tau_i -\text{intuitionistic fuzzy set (}\tau_i -\text{IFS}) A$ of intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L) is said to be $\ast -\tau_i -\text{dense}$ if $\tau_i - cl^*(A) = X$, $i \in \{1,2\}$

An IF ideal bitopological space (X, τ_1, τ_2, L) is said to be $\ast -\text{hyperconnected}$ if $\tau_i -\text{IFS} A$ is $\ast -\tau_i -\text{dense}$ for every $\tau_i -\text{IF open subset } A \neq \emptyset$ of X, $i \in \{1,2\}$.

Theorem 3.1.6 :-

Let (X, τ_1, τ_2, L) be an intuitionistic fuzzy ideal bitopological space and A,B are $\tau_i -\text{intuitionistic fuzzy sets}$ such that $A, B \subset Y \subset X$. Then A and B are $\tau_i -\text{IF} \ast -\text{separated in Y if and only if } A, B$ are $\tau_i -\text{IF} \ast -\text{separated in X}$.

www.Jutq.utq.edu.iq Web Site of the Journal
Proof :- It follows from lemma (2.17) that $\tau_i - \text{cl}^*(A)\bar{q}B$ and $A\bar{q}\tau_i - \text{cl}(B)$, $i \in \{1,2\}$.

Proposition 3.1.7 :-

Let A be an τ_i-intuitionistic fuzzy open set (τ_i-IFOS) and B is an $* - \tau_i$-intuitionistic fuzzy open set ($* - \tau_i$-IFOS) in IFLBTS (X, τ_1, τ_2, L). Then the sets $C_A B = A \land B^c$ and $C_B A = B \land A^c$ are τ_i-IF $* -$ separated in X.

Proof :-

Since $C_A B = A \land B^c$, $C_A B \leq B^c$

$\tau_i - \text{cl}^*(C_A B) \leq \tau_i - \text{cl}^*(B^c) = B^c$ because B^c is $* - \tau_i$-IFCS.

By proposition (2.9) we get

$\tau_i - \text{cl}^*(C_A B)\bar{q}(B^c) \Rightarrow \tau_i - \text{cl}^*(C_A B)\bar{q}B$, $i \in \{1,2\}$

Since $C_B A \leq B$

Therefore $\tau_i - \text{cl}^*(C_A B)\bar{q}C_B A$... (1)

$C_B A \leq A^c$

$\tau_i - \text{cl}(C_B A) \leq \tau_i - \text{cl}(A^c) = A^c$, $i \in \{1,2\}$

$\tau_i - \text{cl}(C_B A) \leq A^c$

$\Rightarrow \tau_i - \text{cl}(C_B A)\bar{q}(A^c) \Rightarrow \tau_i - \text{cl}(C_B A)\bar{q}A$, $i \in \{1,2\}$

Since $C_A B \leq A$

Then $\tau_i - \text{cl}(C_B A)\bar{q}C_A B$... (2)

From (1) and (2) we get, $C_A B$, $C_B A$ are τ_i-IF $* -$ separated set in X.

Proposition 3.1.8 :-

Let A be an $* - \tau_i$-intuitionistic fuzzy closed set ($* - \tau_i$-IFCS) and B be τ_i-intuitionistic fuzzy closed set (τ_i-IFCS) in IFLBTS...
\((X, \tau_1, \tau_2, L)\). Then the \(\tau_i -\text{IFS}\) \(C_\bar{A}B = A \land B^c\) and \(C_BA = B \land A^c\) are \(\tau_i -\text{IF } \ast -\text{separated sets in } X, i \in \{1,2\}\).

Proof :

Since \(A\) is \(\ast -\tau_i -\text{IFCS}\) and \(B\) is an \(\tau_i -\text{IFCS}\), \(i \in \{1,2\}\)

So \(A = \tau_i - \text{cl}^*\(A\)\) and \(B = \tau_i - \text{cl}(B)\)

\(C_\bar{A}B \leq A \Rightarrow \tau_i - \text{cl}^*(C_\bar{A}B) \leq \tau_i - \text{cl}^*(A) = A, i \in \{1,2\}\)

By proposition (2.9) we get

\(\tau_i - \text{cl}^*(C_\bar{A}B)\bar{q}A^c\)

Since \(C_BA \leq A^c\), then \(\tau_i - \text{cl}^*(C_\bar{A}B)\bar{q}C_BB \ldots (1)\)

Since \(C_BA \leq B \Rightarrow \tau_i - \text{cl}(C_BA) \leq \tau_i - \text{cl}(B) = B, i \in \{1,2\}\)

By proposition (2.9) we get

\(\tau_i - \text{cl}(C_BA)\bar{q}B^c\)

Since \(C_\bar{A}B \leq B^c\), then \(\tau_i - \text{cl}(C_BA)\bar{q}C_\bar{A}B \ldots (2)\)

\(C_\bar{A}B, C_BA\) are \(\tau_i -\text{IF } \ast -\text{separated sets in } X\).

Theorem 3.1.9 :-

Let \((X, \tau_1, \tau_2, L)\) be IFLBTS. Then \(A\) and \(B\) are two \(\tau_i -\text{IF } \ast -\text{separated sets if and only if there exists an } \tau_i -\text{intuitionistic fuzzy open set } (\tau_i -\text{IFOS})U\) and \(\ast -\tau_i -\text{intuitionistic fuzzy open set } V\) \((\ast \tau_i -\text{IFOS})\), \(i \in \{1,2\}\)

Such that \(A \leq U, B \leq V, A\hat{q}V\) and \(B\hat{q}U\).

Proof :

\((\Rightarrow)\) Suppose that \(A, B\) are \(\tau_i -\text{IF } \ast -\text{separated sets}\).

\(\Rightarrow \tau_i - \text{cl}^*(A)\hat{q}B\) and \(A\hat{q}\tau_i - \text{cl}(B)\)

Now put \(V = (\tau_i - \text{cl}^*(A))^c\) and \(U = (\tau_i - \text{cl}(B))^c\)

So \(U\) is \(\tau_i -\text{IFOS}\) and \(V \ast -\tau_i -\text{IFOS}, i \in \{1,2\}\)

www.Jutq.utq.edu.iq Web Site of the Journal
Then $V^c \tilde{q} B$ and $A \tilde{q} U^c$

By proposition (2.9) we get $V^c \leq B^c \Rightarrow B \leq V$ and $A \leq U$

So $A \leq (\tau_i - \text{cl}(B))^c$ and $B \leq (\tau_i - \text{cl}^*(A))^c$

Since $B \leq \tau_i - \text{cl}(B)$ and since $\tau_i - \text{cl}^*(A) = A \vee A^*(L, \tau_i)$, $i \in \{1,2\}$, then $A \leq \tau_i - \text{cl}^*(A)$

Then $A \leq V^c$ and $B \leq U^c$

Therefore, $A \tilde{q} V$ and $B \tilde{q} U$.

(\iff) Suppose that there exist U be $\tau_i - \text{IFos}$ and V be $* - \tau_i - \text{IFOS}$ in X such that $A \leq U$, $B \leq V$, $A \tilde{q} V$ and $B \tilde{q} U$.

Now U^c is $\tau_i - \text{IFCS}$ and V^c is an $* - \tau_i - \text{IFCs}$ in X, $i \in \{1,2\}$

Since $A \tilde{q} V$ and $B \tilde{q} U$, then $A \leq V^c$ and $B \leq U^c$.

Since $A \leq U$ and $B \leq V$, thus $U^c \leq A^c$ and $V^c \leq B^c$

Since $A \leq V^c \Rightarrow \tau_i - \text{cl}^*(A) \leq \tau_i - \text{cl}^*(V^c) = V^c$

Because V^c is $* - \tau_i - \text{IFCS}$

$\Rightarrow \tau_i - \text{cl}^*(A) \leq V^c \leq B^c$, since $B \leq U^c$

$\Rightarrow \tau_i - \text{cl}(B) \leq \tau_i - \text{cl}(U^c) = U^c$, because U^c is $\tau_i - \text{IFCS}$, $i \in \{1,2\}$

Thus $\tau_i - \text{cl}(B) \leq U^c \leq A^c$

By proposition (2.9) $\tau_i - \text{cl}^*(A) \leq B^c$,

Then $\tau_i - \text{cl}^*(A) \tilde{q} B \ldots (1)$

$\tau_i - \text{cl}(B) \leq A^c \Rightarrow \tau_i - \text{cl}(B) \tilde{q} A$, then $A \tilde{q} \tau_i - \text{cl}(B) \ldots (2)$

Hence A, B are $\tau_i - \text{IF} * - \text{separated sets}$

Definition 3.1.10:

An $\tau_i - \text{intuitionistic fuzzy set}$ E in intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L) is said to be intuitionistic fuzzy $* - \text{connected}$ if it
can not be expressed as the Union of two intuitionistic fuzzy \(* \) - separated sets. Otherwise, \(E \) is said to be intuitionistic fuzzy \(* \) - disconnected. If \(E = X \), then \(X \) is said to be intuitionistic fuzzy \(* \) - connected space. And we shall denoted it by \((\tau_1, \tau_2)_IF \), for short \(i \in \{1,2\} \).

Theorem 3.1.11 :-

Let \(A \) and \(B \) be \(\tau_i - \)intuitionistic fuzzy \(* \) - separated sets in an intuitionistic fuzzy ideal bitopological pace \((X, \tau_1, \tau_2, L)\) and \(E \) be a non empty \(\tau_i - \)IF \(* \) - connected set in \(X \) such that \(E \subseteq A \cup B \). Then exactly one of the following conditions holds:

a) \(E \leq A \) and \(E \cap B = 0 _

b) \(E \leq B \) and \(\cap A = 0 _

Proof :-

Let \(E \cap B = 0 _

Since \(E \leq A \cup B \) then \(E \leq A \)

Similarly, if \(E \cup A = 0 _

we have \(E \leq B \)

Since \(E \leq A \cup B \) then \(E \cap A = 0 _

and \(E \cap B = 0 _

can not hold simultaneously (because \(E \neq 0 _

Suppose that \(E \cap B \neq 0 _

and \(\cap A \neq 0 _

Then \(E \cap A \) and \(E \cap B \) are \(\tau_i - \)IF \(* \) - separated set in \(X \) such that

\(E = (E \cap A) \cup (E \cap B) \) therefore \(E \) is an \(\tau_i - \)intuitionistic fuzzy \(* \) - disconnectedness of \(E \).

This is contradiction

Hence exactly one of the conditions (a) and (b) must hold.
Theorem 3.1.12 :-

Let E,F be two τ_i–intuitionistic fuzzy sets of IFLBTS (X,τ_1,τ_2,L) if E is an τ_i–IF *–connected and $E \leq F \leq \tau_i – \text{cl}^*(E)$, $i \in \{1,2\}$. Then F is an τ_i–IF *–connected set.

Proof :-

If $= 0_\sim$, then the result is true.

Let $F \neq 0_\sim$ and F is a IF *–disconnected. There exist two τ_i–IF *–separated sets A and B in X such that $F = \lor B$. Since E is an τ_i–IF *–connected and

$E \leq F = E \lor F, E \leq F = A \lor B, E \leq A \lor B$

So by theorem (3.1.11), we get

$E \leq A$ and $E \land B = 0_\sim$ or $E \leq B$ and $E \land A = 0_\sim$

Let $E \leq A$ and $E \land B = 0_\sim$

$B = B \land F \leq B \land \tau_i – \text{cl}^*(E) \leq B \land \tau_i – \text{cl}^*(A) \leq B \land B^c \leq B$, $i \in \{1,2\}$

It follows that $B = B \land B^c$ when $B = 0_\sim$ or $\mu_B(x) = \nu_B(x), \forall x \in X$.

Since $\neq 0_\sim \implies \mu_B(x) = \nu_B(x), \forall x \in X$.

Thus, $B_r = X$ where B_0 denotes the support of B.

Now $E \land B = 0_\sim$ implies $E_r \land B_r = \emptyset \implies E_r = \emptyset \implies E = \emptyset$

Which is a contradiction

Similarly, if $E \leq B$ and $E \land A = 0_\sim$, then we get $E = 0_\sim$ a contradiction

Hence F is an τ_i–intuitionistic fuzzy *–connected.

Theorem 3.1.13 :-

Let A and B be two τ_i–intuitionistic fuzzy *–connected sets which are not τ_i–intuitionistic fuzzy *–separated. Then $A \lor B$ is τ_i–intuitionistic fuzzy*–connected set.
Proof :

Suppose that $A \lor B$ is an τ_i—intuitionistic fuzzy *—disconnected set $\implies A \lor B = G \lor H$ where G and H are τ_i—intuitionistic fuzzy *—separated sets in X.

Since $A \leq A \lor B$ and $B \leq A \lor B$

Then $A \leq G \lor H$ and $B \leq G \lor H$

By theorem (3.1.11), we get

$A \leq G$ with $A \land H = 0_\sim$ or $A \leq H$ with $A \land G = 0_\sim$.

And $B \leq G$ with $B \land H = 0_\sim$ or $B \leq H$ with $\land G = 0_\sim$.

If $A \leq G$ and $B \leq H$ or $A \leq H$ and $B \leq G$

We get that A and B are τ_i—intuitionistic fuzzy *—separated and this contradiction

If $A \leq G$ with $B \land H = 0_\sim$ and $B \leq G$ with $\land H = 0_\sim$.

If $A \leq H$ with $A \land G = 0_\sim$ and $B \leq H$ with $B \land G = 0_\sim$

We get that

$A \lor B \leq G$ and $H = 0_\sim$ or $A \lor B \leq H$ and $G = 0_\sim$ which contradiction, therefore, $A \lor B$ is τ_i—intuitionistic fuzzy *—connected set.

Theorem 3.1.14 :

Let $f: (X, \tau_1, \tau_2, L) \rightarrow (Y, \tau_1, \tau_2)$ is intuitionistic fuzzy continuous on to mapping, if (X, τ_1, τ_2, L) is an τ_i—intuitionistic fuzzy *—connected ideal bitopological space. Then (Y, τ_1, τ_2) is also τ_i—intuitionistic fuzzy *—connected bitopological space.

Proof :

It is known that connectedness is preserved by intuitionistic fuzzy continuous surjections.
The proof is clear.

Corollary 3.1.15 :-

If IFS A is an $\tau _1$—intuitionistic fuzzy $*-$connected set in an intuitionistic fuzzy ideal bitopological space $(X, \tau _1, \tau _2, L)$. Then $\tau _i - cl^*(A)$, $i \in \{1,2\}$ is $\tau _i$—intuitionistic fuzzy $*-$connected set .

Proof :-

Since $\tau _i - cl^*(A) = A \cup A^*(L, \tau _i), i \in \{1,2\}$,

Then $\subseteq \tau _i - cl^*(A)$.

Since A is $\tau _i$—IF $*-$connected set and $A \subseteq \tau _i - cl^*(A)$.

By theorem (3.1.12)

$\tau _i - cl^*(A)$ is an $\tau _i$—IF $*-$connected set .

Theorem 3.1.16 :-

If $\{\mu _i; i \in N\}$ is a non empty family of $\tau _i$—intuitionistic fuzzy $*-$connected sets of an IFLBTS $(X, \tau _1, \tau _2, L)$ with $\bigcap _{i \in I} \mu _i \neq \emptyset$. Then $\bigcup _{i \in I} \mu _i$ is an $\tau _i$—intuitionistic fuzzy $*-$connected set .

Proof :-

Suppose that $\bigcup _{i \in I} \mu _i$ is not $\tau _i$—IF $*-$connected set .

Then by definition (3.1.10) , there exist two $\tau _i$—IF $*-$separated sets H and G , such that

$\bigcup _{i \in I} \mu _i = H \cup G$, since $\bigcap _{i \in I} \mu _i \neq \emptyset$. We have a point x in $\bigcap _{i \in I} \mu _i$.

Since $\epsilon \bigcup _{i \in I} \mu _i$, either $x \in H$ or $x \in G$.

Suppose that ϵX . Since $x \in \mu _i$ for each ϵN , then $\mu _i$ and H intersect for each $i \epsilon N$.

By theorem (3.1.11) $\mu _i \subseteq H$ and $\mu _i \wedge G = 0_-$ or $\mu _i \subseteq G$ and $\mu _i \cap H = 0_-$.

Suppose that $\mu _i \subseteq H \Rightarrow \mu _i \subseteq H$ for all $i \epsilon N$ and hence $\bigcup _{i \epsilon I} \mu _i \subseteq H$.

www.Jutq.utq.edu.iq Web Site of the Journal
This implies that $\tau_i -\text{IF} \ast -\text{separated set} \ G$ is empty.
This is a contradiction.
Suppose that $\mu_i \subset G$. By similar way, we get $H = \emptyset$.
And this is a contradiction.
Thus, $\cup_{i \in I} \mu_i$ is an $\tau_i -\text{intuitionistic fuzzy} \ast -\text{connected set}$.

Theorem 3.1.17 :-

Suppose that $\{\mu_n; n \in \mathbb{N}\}$ is an sequence of $\tau_i -\text{intuitionistic fuzzy} \ast -\text{connected open sets}$ of an intuitionistic fuzzy ideal bitopological space (X, τ_1, τ_2, L) and $\mu_n \cap \mu_{n+1} \neq \emptyset$ for each $n \in \mathbb{N}$. Then $\cup_{i \in I} \mu_i$ is $\tau_i -\text{IF} \ast -\text{connected set}$.

Proof :-
By induction and theorem (3.1.16)
The $N_n = \cup_{k \leq n} \mu_k$ is $\tau_i -\text{IF} \ast -\text{connected open set}$ for each $n \in \mathbb{N}$
Also, N_n is $\tau_i -\text{IF} \ast -\text{connected open set}$.
Thus, $\cup_{n \in \mathbb{N}} \mu_n$ is $\tau_i -\text{IF} \ast -\text{connected set}$.

References

www.Jutq.utq.edu.iq Web Site of the Journal