Advances in Properties of Rubber Reinforced Soil

Joint Authors

Yang, Zhongnian
Zhang, Qi
Shi, Wei
Lv, Jianhang
Lu, Zhaochi
Ling, Xianzhang

Source

Advances in Civil Engineering

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-12-15

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Civil Engineering

Abstract EN

The accumulation of waste tires is a global resource and environmental problem.

The landfill or incineration of tires will infiltrate toxic chemicals into the surrounding environment, which poses a serious ecological threat to the environment.

A large number of studies have shown that waste tires can be used in geotechnical engineering, which provides a good idea for the recycling of waste tires.

Up to now, researchers have tested the performance of soil mixed with waste tires by dynamic triaxial test, California load ratio test, unconfined compression test, direct shear test, consolidation test, and expansive force test.

The results show that the stability and strength of the soil can be enhanced by adding about 20% rubber particles to the expansive soil, and the expansion, contraction, and consolidation characteristics of the expansive soil can be significantly improved.

Rubber can improve the mechanical properties and deformation properties of sand.

The rubber sand with a rubber content of 30% is often used as the isolation layer of middle and low buildings.

However, it remains to be seen whether it is sustainable and durable to use waste tire rubber to improve soil properties and whether the chemical composition of waste tire rubber will have adverse effects on soil.

So, more researchers are encouraged to look into this question.

Here, we review the method and effect of rubber reinforcement technology with scrap tires and introduce the practical application of rubber reinforcement technology in engineering, such as specific engineering projects for retaining wall, road filling, shock absorption, and vibration isolation.

This review will be of great significance and broad prospects for the reuse of waste tires and the development of geotechnical engineering.

American Psychological Association (APA)

Yang, Zhongnian& Zhang, Qi& Shi, Wei& Lv, Jianhang& Lu, Zhaochi& Ling, Xianzhang. 2020. Advances in Properties of Rubber Reinforced Soil. Advances in Civil Engineering،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1122343

Modern Language Association (MLA)

Yang, Zhongnian…[et al.]. Advances in Properties of Rubber Reinforced Soil. Advances in Civil Engineering No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1122343

American Medical Association (AMA)

Yang, Zhongnian& Zhang, Qi& Shi, Wei& Lv, Jianhang& Lu, Zhaochi& Ling, Xianzhang. Advances in Properties of Rubber Reinforced Soil. Advances in Civil Engineering. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1122343

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1122343