A Novel Space Large Deployable Paraboloid Structure with Power and Communication Integration

Joint Authors

Zheng, Tao
Rui, Xi
Yan, Lide
Zheng, Fei

Source

International Journal of Antennas and Propagation

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-11-13

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Electronic engineering

Abstract EN

The combination of a solar array and a communication antenna can reduce the entire mass, physical size, and cost in space applications.

Currently, related studies mainly focus on the combination of the two structures on the one flat plate structure (FPS).

Compared with the FPS, a paraboloid structure has a lower surface density and higher conversion efficiency.

Therefore, a novel space large deployable paraboloid structure with power and communication integration (SSPCI) is proposed and designed in detail, for spacecraft on a sun synchronous earth orbit; it consists of a cable mesh membrane reflector (CMMR), an energy conversion device (ECD), and a three-extensible-rod (TER) pointing mechanism.

To achieve the goal of integrating power and communication, the TER pointing mechanism drives the CMMR/ECD to track the sun in the sunshine region or to turn to face the ground station/other target in the Earth’s shadow region.

Then, through simulation analyses of the deploying process, static force at a limit orientation, and sun tracking process of the SSPCI, it is proved that the SSPCI is feasible and has satisfactory performance.

Finally, deploying experiments of the folded hoop of the CMMR and sun tracking experiments of the TER pointing mechanism on the ground were carried out successfully, which proves that the folded hoop can be deployed successfully with fairly high deploying dependability, and the TER pointing mechanism is feasible for the SSPCI from the mechanism principle and the control mode in space applications indirectly.

Moreover, the tracking accuracy of the TER pointing mechanism is estimated to be within ±0.4° although the machining precision of its components is not high.

American Psychological Association (APA)

Zheng, Tao& Zheng, Fei& Rui, Xi& Yan, Lide. 2019. A Novel Space Large Deployable Paraboloid Structure with Power and Communication Integration. International Journal of Antennas and Propagation،Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1157381

Modern Language Association (MLA)

Zheng, Tao…[et al.]. A Novel Space Large Deployable Paraboloid Structure with Power and Communication Integration. International Journal of Antennas and Propagation No. 2019 (2019), pp.1-17.
https://search.emarefa.net/detail/BIM-1157381

American Medical Association (AMA)

Zheng, Tao& Zheng, Fei& Rui, Xi& Yan, Lide. A Novel Space Large Deployable Paraboloid Structure with Power and Communication Integration. International Journal of Antennas and Propagation. 2019. Vol. 2019, no. 2019, pp.1-17.
https://search.emarefa.net/detail/BIM-1157381

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1157381