Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica)‎

Joint Authors

Cao, Qing
Cao, Xiaomeng
Song, Sha
You, Jiachun
Chen, Bin

Source

Geofluids

Issue

Vol. 2020, Issue 2020 (31 Dec. 2020), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2020-11-10

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Physics

Abstract EN

With the development of marine seismic exploration, the ocean bottom seismometer (OBS) as a new seismic acquisition technology has been widely concerned.

Although multiple waves are frequently viewed as noises, they may carry a wealth of subsurface information and produce a broader illumination than primary waves.

To perform multiple wave imaging, we propose to utilize a two-way wave equation depth wavefield extrapolation method which is rarely used in this field.

A simple dipping model is imaged by using primary and multiple waves, which proves the superiority of multiple waves in imaging over the primary waves and lays a foundation for practical application.

Moreover, the comparison of multiple imaging results by reverse time migration and those by our proposed method demonstrates that our proposed method requires less storage space.

In this study, we apply this migration method to actual OBS data collected in the South Shetland margin (Antarctica), where gas hydrates have been well documented.

Firstly, the wavefield separation method is adopted to process the OBS data, so as to produce reliable primary and multiples waves; secondly, the ray-tracing method is used to derive the velocity field; and finally, the depth wavefield extrapolation method based on the two-way wave equation is applied to image primary and multiple waves.

Migration results show that multiple waves provide a broader illumination and a clearer sediment structure than primary waves, especially for the highly shallow reflections.

American Psychological Association (APA)

Song, Sha& You, Jiachun& Cao, Qing& Chen, Bin& Cao, Xiaomeng. 2020. Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica). Geofluids،Vol. 2020, no. 2020, pp.1-9.
https://search.emarefa.net/detail/BIM-1165828

Modern Language Association (MLA)

Song, Sha…[et al.]. Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica). Geofluids No. 2020 (2020), pp.1-9.
https://search.emarefa.net/detail/BIM-1165828

American Medical Association (AMA)

Song, Sha& You, Jiachun& Cao, Qing& Chen, Bin& Cao, Xiaomeng. Depth Migration Based on Two-Way Wave Equation to Image OBS Multiples: A Case Study in the South Shetland Margin (Antarctica). Geofluids. 2020. Vol. 2020, no. 2020, pp.1-9.
https://search.emarefa.net/detail/BIM-1165828

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1165828