Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring

Joint Authors

Badura, Marek
Batog, Piotr
Drzeniecka-Osiadacz, Anetta
Modzel, Piotr

Source

Journal of Sensors

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-16, 16 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-10-31

Country of Publication

Egypt

No. of Pages

16

Main Subjects

Civil Engineering

Abstract EN

Low-cost sensors are an opportunity to improve the spatial and temporal resolution of particulate matter data.

However, such sensors should be calibrated under conditions close to the final ones before any monitoring actions.

The paper presents the results of a collocated comparison of four models of low-cost optical sensors with a TEOM 1400a analyser.

SDS011 (Nova Fitness), ZH03A (Winsen), PMS7003 (Plantower), and OPC-N2 (Alphasense) sensors were used in this research.

Three copies of each sensor model were placed in a common box to compare the sensor performance under the same measurement conditions.

Monitoring of the PM2.5 fraction was conducted for almost half a year from 21 August 2017 to 19 February 2018 in Wrocław (Poland).

Reproducibility between sensor units was assessed on the basis of coefficient of variation (CV).

CV values were lower than 7% in the case of SDS011 and PMS7003 sensors and equal to 20% for OPC-N2 units.

CV was higher than 50% for ZH03A, mainly due to malfunctions.

During the measurements, the trends of outputs from sensors were generally similar to TEOM data, but significant overestimation of PM2.5 concentrations was observed for the sensor raw data.

A high linear relationship between TEOM and sensors was noticed for 1 min, 15 min, and 1-hour averaged data for PMS7003 sensors (R2≈0.83–0.89), for SDS011 units (R2≈0.79–0.86), and for one unit of ZH03A (R2≈0.74–0.81).

R2 values for daily averages were at the level 0.91–0.93 for PMS7003, 0.87–0.90 for SDS011, and 0.89 for ZH03A.

OPC-N2 had only a moderate linear relationship with TEOM (R2≈0.53–0.69 for daily data and 0.43–0.61 for shorter time averages).

Quite large dispersion of data and high relative errors of PM2.5 estimation were observed for concentration ranges below 20–30 μg/m3.

The impact of high relative humidity level was observed for SDS011 and OPC-N2 devices—clear overestimation of outputs was observed above 80% RH.

American Psychological Association (APA)

Badura, Marek& Batog, Piotr& Drzeniecka-Osiadacz, Anetta& Modzel, Piotr. 2018. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. Journal of Sensors،Vol. 2018, no. 2018, pp.1-16.
https://search.emarefa.net/detail/BIM-1201523

Modern Language Association (MLA)

Badura, Marek…[et al.]. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. Journal of Sensors No. 2018 (2018), pp.1-16.
https://search.emarefa.net/detail/BIM-1201523

American Medical Association (AMA)

Badura, Marek& Batog, Piotr& Drzeniecka-Osiadacz, Anetta& Modzel, Piotr. Evaluation of Low-Cost Sensors for Ambient PM2.5 Monitoring. Journal of Sensors. 2018. Vol. 2018, no. 2018, pp.1-16.
https://search.emarefa.net/detail/BIM-1201523

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1201523