Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios

Joint Authors

Ghiaasi, Golsa
Blazek, Thomas
Ashury, Mehdi
Santos, Rute Ramalho
Mecklenbräuker, Christoph F.

Source

Wireless Communications and Mobile Computing

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-05-08

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Information Technology and Computer Science

Abstract EN

This paper proposes and discusses the architecture for a real-time vehicular channel emulator capable of reproducing the input/output behavior of nonstationary time-variant radio propagation channels in safety-relevant vehicular scenarios.

The vehicular channel emulator architecture aims at a hardware implementation which requires minimal hardware complexity for emulating channels with the varying delay-Doppler characteristics of safety-relevant vehicular scenarios.

The varying delay-Doppler characteristics require real-time updates to the multipath propagation model for each local stationarity region.

The vehicular channel emulator is used for benchmarking the packet error performance of commercial off-the-shelf (COTS) vehicular IEEE 802.11p modems and a fully software-defined radio-based IEEE 802.11p modem stack.

The packet error ratio (PER) estimated from temporal averaging over a single virtual drive and the packet error probability (PEP) estimated from ensemble averaging over repeated virtual drives are evaluated and compared for the same vehicular scenario.

The proposed architecture is realized as a virtual instrument on National Instruments™ LabVIEW.

The National Instrument universal software radio peripheral with reconfigurable input-output (USRP-Rio) 2953R is used as the software-defined radio platform for implementation; however, the results and considerations reported are of general purpose and can be applied to other platforms.

Finally, we discuss the PER performance of the modem for two categories of vehicular channel models: a vehicular nonstationary channel model derived for urban single lane street crossing scenario of the DRIVEWAY’09 measurement campaign and the stationary ETSI models.

American Psychological Association (APA)

Ghiaasi, Golsa& Blazek, Thomas& Ashury, Mehdi& Santos, Rute Ramalho& Mecklenbräuker, Christoph F.. 2018. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios. Wireless Communications and Mobile Computing،Vol. 2018, no. 2018, pp.1-11.
https://search.emarefa.net/detail/BIM-1215905

Modern Language Association (MLA)

Ghiaasi, Golsa…[et al.]. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios. Wireless Communications and Mobile Computing No. 2018 (2018), pp.1-11.
https://search.emarefa.net/detail/BIM-1215905

American Medical Association (AMA)

Ghiaasi, Golsa& Blazek, Thomas& Ashury, Mehdi& Santos, Rute Ramalho& Mecklenbräuker, Christoph F.. Real-Time Emulation of Nonstationary Channels in Safety-Relevant Vehicular Scenarios. Wireless Communications and Mobile Computing. 2018. Vol. 2018, no. 2018, pp.1-11.
https://search.emarefa.net/detail/BIM-1215905

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1215905