Modeling and simulation of solar module performance using five parameters model by using matlab in Baghdad City

Other Title(s)

النمذجة و المحاكاة لأداء اللوح الشمسي باستخدام نموذج الخمس عوامل بواسطة الماتلاب في مدينة بغداد

Joint Authors

Talib, Zaynab Riyad
Hashim, Imad Talib

Source

Journal of Engineering

Issue

Vol. 24, Issue 10 (31 Oct. 2018), pp.15-31, 17 p.

Publisher

University of Baghdad College of Engineering

Publication Date

2018-10-31

Country of Publication

Iraq

No. of Pages

17

Main Subjects

Engineering & Technology Sciences (Multidisciplinary)

Abstract EN

This work presents the modeling of the electrical response of monocrystalline photovoltaic module by using five parameters model based on manufacture data-sheet of a solar module that measured in stander test conditions (STC) at radiation 1000W/m² and cell temperature 25℃.

The model takes into account the series and parallel (shunt) resistance of the module.

This paper considers the details of Matlab modeling of the solar module by a developed Simulink model using the basic equations, the first approach was to estimate the parameters: photocurrent Iph, saturation current Is, shunt resistance Rsh, series resistance Rs, ideality factor A at stander test condition (STC) by an iteration process.

To implement the iteration process, a numerical approach based on the Newton Raphson method has been implemented and programmed in Matlab.

The second mathematical model used in Matlab/Simulink using equations for each parameter to determine the parameters at all operating conditions.

The Matlab program gives the information about the behavior of the practical PV module, under different atmospheric conditions.

The model accuracy was also analyzed through finding out the compatibility between the practical and the theoretical aspects at different solar radiation intensity 500, 750 and 1000 W/m2 by extracting the error ratios.

The results show that there is difference between theoretical (modeled) and experimental, the best validation (less error) between five parameters model and experimental maximum power results at radiation 500, 750, 1000 W/m2 and STC was 5.5%, 19%, 18% and 12.3% in January respectively, due to the decreases in ambient temperature and thus decreases in the temperature of solar module in January led to increase in maximum output power and producing best validation between model and experimental in this month.

American Psychological Association (APA)

Hashim, Imad Talib& Talib, Zaynab Riyad. 2018. Modeling and simulation of solar module performance using five parameters model by using matlab in Baghdad City. Journal of Engineering،Vol. 24, no. 10, pp.15-31.
https://search.emarefa.net/detail/BIM-840581

Modern Language Association (MLA)

Hashim, Imad Talib& Talib, Zaynab Riyad. Modeling and simulation of solar module performance using five parameters model by using matlab in Baghdad City. Journal of Engineering Vol. 24, no. 10 (Oct. 2018), pp.15-31.
https://search.emarefa.net/detail/BIM-840581

American Medical Association (AMA)

Hashim, Imad Talib& Talib, Zaynab Riyad. Modeling and simulation of solar module performance using five parameters model by using matlab in Baghdad City. Journal of Engineering. 2018. Vol. 24, no. 10, pp.15-31.
https://search.emarefa.net/detail/BIM-840581

Data Type

Journal Articles

Language

English

Notes

Includes appendices : p. 24-31

Record ID

BIM-840581