Broad phonetic classification of ASR using visual based features Doaa A. Lehabik, Mohamed H. Merzban, Sameh F. Saad 3, Amr M. Gody

العناوين الأخرى

التصنيف الصوتي الواسع للتعرف التلقائي على الكلام بأستخدام المميزات المرئية

عدد الاستشهادات بقاعدة ارسيف : 
3

المؤلفون المشاركون

Lahibk, Dua Ahmad
Mrzban, Muhammad hamdi
Sad, Samih Farid
Judi, Amr Muhammad Rifat

المصدر

The Egyptian Journal of Language Engineering

العدد

المجلد 7، العدد 1 (30 إبريل/نيسان 2020)، ص ص. 14-26، 13ص.

الناشر

الجمعية المصرية لهندسة اللغة

تاريخ النشر

2020-04-30

دولة النشر

مصر

عدد الصفحات

13

التخصصات الرئيسية

تكنولوجيا المعلومات وعلم الحاسوب

الموضوعات

الملخص EN

This paper presents a novel method of classifying speech phonemes.

Four hybrid techniques based on the acoustic-phonetic approach and pattern recognition approach are used to emphasize the principle idea of this research.

The first hybrid model is constructed of fixed state, structured Hidden Markov Model, Gaussian Mixture, Mel scaled Best Tree Image, Convolution Neural network, Vector Quantization (FS-HMM-GM-MBTI-CNN-VQ).

The second hybrid model is constructed of variable state, dynamically structured Hidden Markov Model, Gaussian Mixture, Mel scaled Best Tree Image, Convolution Neural network, Vector Quantization (VS-HMM-GM-MBTI-CNN-VQ).

The third hybrid model is constructed of fixed state, structured Hidden Markov Model, Gaussian Mixture, Mel scaled Best Tree Image, Convolution Neural network (FS-HMM-GM-MBTI-CNN).

The fourth hybrid model is constructed of variable state, dynamically structured Hidden Markov Model, Gaussian Mixture, Mel scaled Best Tree Image, Convolution Neural network (VS-HMM-GM-MBTI-CNN).

TIMIT database is used in this paper.

All phones are classified into five classes and segregated into Vowels, Plosives, Fricatives, Nasals, and Silences.

The results show that using (VS-HMM-GM-MBTI-CNN-VQ) is an available method for classification of phonemes, with the potential for use in applications such as automatic speech recognition and automatic language identification.

Competitive results are achieved especially in nasals, plosives, and silence high successive rates than others.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Lahibk, Dua Ahmad& Mrzban, Muhammad hamdi& Sad, Samih Farid& Judi, Amr Muhammad Rifat. 2020. Broad phonetic classification of ASR using visual based features Doaa A. Lehabik, Mohamed H. Merzban, Sameh F. Saad 3, Amr M. Gody. The Egyptian Journal of Language Engineering،Vol. 7, no. 1, pp.14-26.
https://search.emarefa.net/detail/BIM-1012036

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Lahibk, Dua Ahmad…[et al.]. Broad phonetic classification of ASR using visual based features Doaa A. Lehabik, Mohamed H. Merzban, Sameh F. Saad 3, Amr M. Gody. The Egyptian Journal of Language Engineering Vol. 7, no. 1 (Apr. 2020), pp.14-26.
https://search.emarefa.net/detail/BIM-1012036

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Lahibk, Dua Ahmad& Mrzban, Muhammad hamdi& Sad, Samih Farid& Judi, Amr Muhammad Rifat. Broad phonetic classification of ASR using visual based features Doaa A. Lehabik, Mohamed H. Merzban, Sameh F. Saad 3, Amr M. Gody. The Egyptian Journal of Language Engineering. 2020. Vol. 7, no. 1, pp.14-26.
https://search.emarefa.net/detail/BIM-1012036

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

-

رقم السجل

BIM-1012036