Mechanical and Durability Characteristics of Latex-Modified Fiber-Reinforced Segment Concrete as a Function of Microsilica Content

المؤلفون المشاركون

Park, Chan-Gi
Lee, Joo-Ha
Kim, Woong
Oh, Ri-On
Kim, Mi-Sol
Jeon, Sang-Min

المصدر

Advances in Civil Engineering

العدد

المجلد 2019، العدد 2019 (31 ديسمبر/كانون الأول 2019)، ص ص. 1-10، 10ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2019-01-13

دولة النشر

مصر

عدد الصفحات

10

التخصصات الرئيسية

هندسة مدنية

الملخص EN

This study evaluated the performance of latex-modified fiber-reinforced concrete (RC) segments as a function of the substitution level of microsilica and type of reinforced fiber, to address the problem of corrosion of steel segments and steel-reinforced fiber segments, which are commonly used to shield tunnel-boring machine (TBM) tunnels in urban spaces.

Our study compared macro synthetic, steel, and hybrid (macro synthetic fiber + polypropylene fiber) reinforcing fibers.

The substitution levels of microsilica used were 0, 2, 4, and 6%.

The target strengths were set at 40 and 60 MPa to test compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance.

Testing of latex-modified and fiber-reinforced segment concrete showed that the compressive strength, flexural strength, and chloride ion penetration resistance increased with an increasing substitution level of microsilica.

These improvements were attributed to the densification of the concrete due to filling micropores with microsilica.

Micro synthetic fiber was more effective in terms of improved compressive strength, flexural strength, and chloride ion penetration resistance than steel fiber.

These results were due to the higher number of micro synthetic fibers per unit volume compared with steel fiber, which reduced the void volume and suppressed the development of internal cracks.

The optimal microsilica content and fiber volume fraction of micro synthetic fiber were 6% and 1%, respectively.

To evaluate the effects of the selected mixtures and hybrid fibers simultaneously, other mixing variables were fixed and a hybrid fiber mixture (combination of macro synthetic fibers and polypropylene fibers) was used.

The hybrid fiber mixture produced better compressive strength, flexural strength, chloride ion penetration resistance, and impact resistance than the micro synthetic fibers.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Kim, Woong& Oh, Ri-On& Lee, Joo-Ha& Kim, Mi-Sol& Jeon, Sang-Min& Park, Chan-Gi. 2019. Mechanical and Durability Characteristics of Latex-Modified Fiber-Reinforced Segment Concrete as a Function of Microsilica Content. Advances in Civil Engineering،Vol. 2019, no. 2019, pp.1-10.
https://search.emarefa.net/detail/BIM-1116026

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Kim, Woong…[et al.]. Mechanical and Durability Characteristics of Latex-Modified Fiber-Reinforced Segment Concrete as a Function of Microsilica Content. Advances in Civil Engineering No. 2019 (2019), pp.1-10.
https://search.emarefa.net/detail/BIM-1116026

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Kim, Woong& Oh, Ri-On& Lee, Joo-Ha& Kim, Mi-Sol& Jeon, Sang-Min& Park, Chan-Gi. Mechanical and Durability Characteristics of Latex-Modified Fiber-Reinforced Segment Concrete as a Function of Microsilica Content. Advances in Civil Engineering. 2019. Vol. 2019, no. 2019, pp.1-10.
https://search.emarefa.net/detail/BIM-1116026

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1116026