Vibration Signal Analysis of Water Seal Blasting Based on Wavelet Threshold Denoising and HHT Transformation

المؤلفون المشاركون

Liu, Jiang-chao
Gao, Wen-xue

المصدر

Advances in Civil Engineering

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-14، 14ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-03-09

دولة النشر

مصر

عدد الصفحات

14

التخصصات الرئيسية

هندسة مدنية

الملخص EN

The blasting vibration signal obtained from tunnel construction monitoring is affected by the external environment, which contains a lot of noise that causes distortion during signal processing.

To analyse the blasting vibration signal and determine the appropriate water seal blasting charge structure for construction, combined with wavelet threshold denoising method and HHT transformation, the blasting vibration signals of the four charge structures of conventional charge, water interval charge at both ends, water interval charge at the orifice, and water interval charge at the hole bottom are denoised and HHT is analysed.

The results show that the wavelet threshold method can effectively eliminate high-frequency noise in the blasting vibration signals and retain information carried by the vibration signal itself.

The frequency and energy of the blasting vibration signals of the water interval charge at both ends are densely distributed in the range of 0 s to 0.9 s and below 100 Hz.

The frequency and energy of the blasting signals of the other three charging structures are reduced within the same range, sparse areas appear, and the instantaneous total energy is smaller than that with a water interval charge at both ends, which shows that the water interval charge at both ends can effectively apply explosive energy to the surrounding rock and reduce energy loss in the explosive.

The blasting vibration signal energy of the water interval charge at both ends is mainly concentrated in components IMF2 to IMF5, and the corresponding frequencies are concentrated at 6 Hz to 11 Hz and 20 Hz to 70 Hz, while the blasting vibration signal energy of other three charge structures is mainly distributed in components IMF2 to IMF4, corresponding frequencies are concentrated within 20 Hz to 70 Hz, and the distribution at low frequencies is not obvious.

Therefore, when using the water interval charge at both ends, it is necessary to increase the main vibration frequency of the original vibration signals by reducing the single section charge and using frequency shift technology to avoid the natural frequency of the structure and reduce resonance-induced damage.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Liu, Jiang-chao& Gao, Wen-xue. 2020. Vibration Signal Analysis of Water Seal Blasting Based on Wavelet Threshold Denoising and HHT Transformation. Advances in Civil Engineering،Vol. 2020, no. 2020, pp.1-14.
https://search.emarefa.net/detail/BIM-1121619

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Liu, Jiang-chao& Gao, Wen-xue. Vibration Signal Analysis of Water Seal Blasting Based on Wavelet Threshold Denoising and HHT Transformation. Advances in Civil Engineering No. 2020 (2020), pp.1-14.
https://search.emarefa.net/detail/BIM-1121619

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Liu, Jiang-chao& Gao, Wen-xue. Vibration Signal Analysis of Water Seal Blasting Based on Wavelet Threshold Denoising and HHT Transformation. Advances in Civil Engineering. 2020. Vol. 2020, no. 2020, pp.1-14.
https://search.emarefa.net/detail/BIM-1121619

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1121619