Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis

المؤلفون المشاركون

Liao, Huan
Wang, Hongxuan
Rong, Xiaoming
Li, Enqin
Xu, Ren-He
Peng, Ying

المصدر

BioMed Research International

العدد

المجلد 2017، العدد 2017 (31 ديسمبر/كانون الأول 2017)، ص ص. 1-11، 11ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2017-12-07

دولة النشر

مصر

عدد الصفحات

11

التخصصات الرئيسية

الطب البشري

الملخص EN

Radiation-induced brain injury (RI) commonly occurs in patients who received head and neck radiotherapy.

However, the mechanism of RI remains unclear.

We aimed to evaluate whether pyroptosis was involved in RI and the impact of mesenchymal stem cells (MSCs) on it.

BALB/c male mice (6–8 weeks) were cranially irradiated (15 Gy), and MSCs were transplanted into the bilateral cortex 2 days later; then mice were sacrificed 1 month later.

Meanwhile, irradiated BV-2 microglia cells (10 Gy) were cocultured with MSCs for 24 hours.

We observed that irradiated mice brains presented NLRP3 and caspase-1 activation.

RT-PCR then indicated that it mainly occurred in microglia cells but not in neurons.

Further, irradiated BV-2 cells showed pyroptosis and increased production of IL-18 and IL-1β.

RT-PCR also demonstrated an increased expression of several inflammasome genes in irradiated BV-2 cells, including NLRP3 and AIM2.

Particularly, NLRP3 was activated.

Knockdown of NLRP3 resulted in decreased LDH release.

Noteworthily, in vivo, MSCs transplantation alleviated radiation-induced NLRP3 and caspase-1 activation.

Moreover, in vitro, MSCs could decrease caspase-1 dependent pyroptosis, NLRP3 inflammasome activation, and ROS production induced by radiation.

Thus, our findings proved that microglia pyroptosis occurred in RI.

MSCs may act as a potent therapeutic tool in attenuating pyroptosis.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Liao, Huan& Wang, Hongxuan& Rong, Xiaoming& Li, Enqin& Xu, Ren-He& Peng, Ying. 2017. Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BioMed Research International،Vol. 2017, no. 2017, pp.1-11.
https://search.emarefa.net/detail/BIM-1134358

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Liao, Huan…[et al.]. Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BioMed Research International No. 2017 (2017), pp.1-11.
https://search.emarefa.net/detail/BIM-1134358

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Liao, Huan& Wang, Hongxuan& Rong, Xiaoming& Li, Enqin& Xu, Ren-He& Peng, Ying. Mesenchymal Stem Cells Attenuate Radiation-Induced Brain Injury by Inhibiting Microglia Pyroptosis. BioMed Research International. 2017. Vol. 2017, no. 2017, pp.1-11.
https://search.emarefa.net/detail/BIM-1134358

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1134358