SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease

المؤلفون المشاركون

Zhao, Yuhai
Yin, Ying
Guan, Boxin
Li, Yuan

المصدر

BioMed Research International

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-11، 11ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-08-25

دولة النشر

مصر

عدد الصفحات

11

التخصصات الرئيسية

الطب البشري

الملخص EN

Detecting SNP-SNP interactions associated with disease is significant in genome-wide association study (GWAS).

Owing to intensive computational burden and diversity of disease models, existing methods have drawbacks on low detection power and long running time.

To tackle these drawbacks, a fast self-adaptive memetic algorithm (SAMA) is proposed in this paper.

In this method, the crossover, mutation, and selection of standard memetic algorithm are improved to make SAMA adapt to the detection of SNP-SNP interactions associated with disease.

Furthermore, a self-adaptive local search algorithm is introduced to enhance the detecting power of the proposed method.

SAMA is evaluated on a variety of simulated datasets and a real-world biological dataset, and a comparative study between it and the other four methods (FHSA-SED, AntEpiSeeker, IEACO, and DESeeker) that have been developed recently based on evolutionary algorithms is performed.

The results of extensive experiments show that SAMA outperforms the other four compared methods in terms of detection power and running time.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Yin, Ying& Guan, Boxin& Zhao, Yuhai& Li, Yuan. 2020. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease. BioMed Research International،Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1134833

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Yin, Ying…[et al.]. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease. BioMed Research International No. 2020 (2020), pp.1-11.
https://search.emarefa.net/detail/BIM-1134833

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Yin, Ying& Guan, Boxin& Zhao, Yuhai& Li, Yuan. SAMA: A Fast Self-Adaptive Memetic Algorithm for Detecting SNP-SNP Interactions Associated with Disease. BioMed Research International. 2020. Vol. 2020, no. 2020, pp.1-11.
https://search.emarefa.net/detail/BIM-1134833

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1134833