tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome

المؤلفون المشاركون

Li, Shanwen
Liu, Yiwen
He, Xiaowei
Luo, Xiagang
Shi, Huimin
Qu, Gaoting
Wen, Xianli
Gan, Weihua
Wang, Jun
Zhang, Aiqing

المصدر

BioMed Research International

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-12، 12ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-06-23

دولة النشر

مصر

عدد الصفحات

12

التخصصات الرئيسية

الطب البشري

الملخص EN

Idiopathic nephrotic syndrome (INS) is a disease involving injury to podocytes in the glomerular filtration barrier, and its specific causes have not been elucidated.

Transfer RNA-derived fragments (tRFs), products of precise tRNA cleavage, have been indicated to play critical roles in various diseases.

Currently, there is no relevant research on the role of tRFs in INS.

This study intends to explore the changes in and importance of tRFs during podocyte injury in vitro and to further analyze the potential mechanism of INS.

Differentially expressed tRFs in the adriamycin-treated group were identified by high-throughput sequencing and further verified by quantitative RT-PCR.

In total, 203 tRFs with significant differential expression were identified, namely, 102 upregulated tRFs and 101 downregulated tRFs (q<0.05, ∣log2FC∣≥2).

In particular, AS-tDR-008924, AS-tDR-011690, tDR-003634, AS-tDR-013354, tDR-011031, AS-tDR-001008, and AS-tDR-007319 were predicted to be involved in podocyte injury by targeting the Gpr, Wnt, Rac1, and other genes.

Furthermore, gene ontology analysis showed that these differential tRFs were strongly associated with podocyte injury processes such as protein binding, cell adhesion, synapses, the actin cytoskeleton, and insulin-activate receptor activity.

KEGG pathway analysis predicted that they participated in the PI3K-Akt signaling pathway, Wnt signaling pathway, and Ras signaling pathway.

It was reported that these pathways contribute to podocyte injury.

In conclusion, our study revealed that changes in the expression levels of tRFs might be involved in INS.

Seven of the differentially expressed tRFs might play important roles in the process of podocyte injury and are worthy of further study.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Li, Shanwen& Liu, Yiwen& He, Xiaowei& Luo, Xiagang& Shi, Huimin& Qu, Gaoting…[et al.]. 2020. tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome. BioMed Research International،Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1137173

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Li, Shanwen…[et al.]. tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome. BioMed Research International No. 2020 (2020), pp.1-12.
https://search.emarefa.net/detail/BIM-1137173

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Li, Shanwen& Liu, Yiwen& He, Xiaowei& Luo, Xiagang& Shi, Huimin& Qu, Gaoting…[et al.]. tRNA-Derived Fragments in Podocytes with Adriamycin-Induced Injury Reveal the Potential Mechanism of Idiopathic Nephrotic Syndrome. BioMed Research International. 2020. Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1137173

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1137173