Experimental Study of Single Expansion Ramp Nozzle Performance Using Pitot Pressure and Static Pressure Measurements

المؤلفون المشاركون

Laitón, Sergio Nicolas Pachón
de Araujo Martos, João Felipe
da Silveira Rego, Israel
Santos Marinho, George
de Paula Toro, Paulo Gilberto

المصدر

International Journal of Aerospace Engineering

العدد

المجلد 2019، العدد 2019 (31 ديسمبر/كانون الأول 2019)، ص ص. 1-11، 11ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2019-02-27

دولة النشر

مصر

عدد الصفحات

11

الملخص EN

In order to overcome the drag at hypersonic speed, hypersonic flight vehicles require a high level of integration between the airframe and the propulsion system.

Propulsion system based on scramjet engine needs a close interaction between its aerodynamics and stability.

Hypersonic vehicle nozzles which are responsible for generating most of the thrust generally are fused with the vehicle afterbody influencing the thrust efficiency and vehicle stability.

Single expansion ramp nozzles (SERN) produce enough thrust necessary to hypersonic flight and are the subject of analysis of this work.

Flow expansion within a nozzle is naturally 3D phenomena; however, the use of side walls controls the expansion approximating it to a 2D flow confined.

An experimental study of nozzle performance traditionally uses the stagnation conditions and the area ratio of the diverging section of the tunnel for approaching the combustor exit conditions.

In this work, a complete hypersonic vehicle based on scramjet propulsion is installed in the test section of a hypersonic shock tunnel.

Therefore, the SERN inlet conditions are the real conditions from the combustor exit.

The performance of a SERN is evaluated experimentally under real conditions obtained from the combustor exit.

To quantify the SERN performance parameters such as thrust, axial thrust coefficient Cfx and lift L are investigated and evaluated.

The generated thrust was determined from both static and pitot pressure measurements considering the installation of side walls to approximate 2D flow.

Measurements obtained by a rake show that the flow at the nozzle exit is not symmetric.

Pitot and pressure measurements inside the combustion chamber show nonuniform flow condition as expected due to side wall compression and boundary layer.

The total axial thrust for the nozzle obtained with the side wall is slightly higher than without it.

Static pressure measurements at the centerline of the nozzle show that the residence time of the flow in the expansion section is short enough and the flow of the central region of the nozzle is not altered by the lateral expansion when nozzle configuration does not include side walls.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Laitón, Sergio Nicolas Pachón& de Araujo Martos, João Felipe& da Silveira Rego, Israel& Santos Marinho, George& de Paula Toro, Paulo Gilberto. 2019. Experimental Study of Single Expansion Ramp Nozzle Performance Using Pitot Pressure and Static Pressure Measurements. International Journal of Aerospace Engineering،Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1156922

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Laitón, Sergio Nicolas Pachón…[et al.]. Experimental Study of Single Expansion Ramp Nozzle Performance Using Pitot Pressure and Static Pressure Measurements. International Journal of Aerospace Engineering No. 2019 (2019), pp.1-11.
https://search.emarefa.net/detail/BIM-1156922

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Laitón, Sergio Nicolas Pachón& de Araujo Martos, João Felipe& da Silveira Rego, Israel& Santos Marinho, George& de Paula Toro, Paulo Gilberto. Experimental Study of Single Expansion Ramp Nozzle Performance Using Pitot Pressure and Static Pressure Measurements. International Journal of Aerospace Engineering. 2019. Vol. 2019, no. 2019, pp.1-11.
https://search.emarefa.net/detail/BIM-1156922

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1156922