Cell Morphology on Poly(methyl methacrylate)‎ Microstructures as Function of Surface Energy

المؤلفون المشاركون

Leitinger, Gerd
Katschnig, Matthias
Maroh, Boris
Andraschek, Natascha
Schlögl, Sandra
Zefferer, Ulrike
Bock, Elisabeth
Trattnig, Christa
Kaufmann, Maria
Balika, Werner
Holzer, Clemens
Schäfer, Ute
Patz, Silke

المصدر

International Journal of Biomaterials

العدد

المجلد 2019، العدد 2019 (31 ديسمبر/كانون الأول 2019)، ص ص. 1-12، 12ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2019-05-02

دولة النشر

مصر

عدد الصفحات

12

التخصصات الرئيسية

الطب البشري

الملخص EN

Whilst the significance of substrate topography as a regulator of cell function is well established, a systematic analysis of the principles underlying this is still unavailable.

Here we evaluate the hypothesis that surface energy plays a decisive role in substrate-mediated modulation of cell phenotype by evaluation of cell behaviour on synthetic microstructures exhibiting pronounced differences in surface energy.

These microstructures, specifically cubes and walls, were fabricated from a biocompatible base polymer, poly(methyl methacrylate), by variotherm injection molding.

The dimensions of the cubes were 1 μm x 1 μm x 1 μm (height x width x length) with a periodicity of 1:1 and 1:5 and the dimensions of the walls 1 μm x 1 μm x 15 mm (height x width x length) with a periodicity of 1:1 and 1:5.

Mold inserts were made by lithography and electroplating.

The surface energy of the resultant microstructures was determined by static contact angle measurements.

Light scanning microscopy of the morphology of NT2/D1 and MC3T3-E1 preosteoblast cells cultured on structured PMMA samples in both cases revealed a profound surface energy dependence.

“Walls” appeared to promote significant cell elongation, whilst a lack of cell adhesion was observed on “cubes” with the lowest periodicity.

Contact angle measurements on walls revealed enhanced surface energy anisotropy (55 mN/m max., 10 mN/m min.) causing a lengthwise spreading of the test liquid droplet, similar to cell elongation.

Surface energy measurements for cubes revealed increased isotropic hydrophobicity (87° max., H2O).

A critical water contact angle of ≤ 80° appears to be necessary for adequate cell adhesion.

A “switch” for cell adhesion and subsequently cell growth could therefore be applied by, for example, adjusting the periodicity of hydrophobic structures.

In summary cell elongation on walls and a critical surface energy level for cell adhesion could be produced for NT2/D1 and MC3T3-E1 cells by symmetrical and asymmetrical energy barrier levels.

We, furthermore, propose a water-drop model providing a common physicochemical cause regarding similar cell/droplet geometries and cell adhesion on the investigated microstructures.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Katschnig, Matthias& Maroh, Boris& Andraschek, Natascha& Schlögl, Sandra& Zefferer, Ulrike& Bock, Elisabeth…[et al.]. 2019. Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy. International Journal of Biomaterials،Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1158358

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Katschnig, Matthias…[et al.]. Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy. International Journal of Biomaterials No. 2019 (2019), pp.1-12.
https://search.emarefa.net/detail/BIM-1158358

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Katschnig, Matthias& Maroh, Boris& Andraschek, Natascha& Schlögl, Sandra& Zefferer, Ulrike& Bock, Elisabeth…[et al.]. Cell Morphology on Poly(methyl methacrylate) Microstructures as Function of Surface Energy. International Journal of Biomaterials. 2019. Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1158358

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1158358