Experimental Investigation of a Direct Evaporative Cooling System for Year-Round Thermal Management with Solar-Assisted Dryer

المؤلفون المشاركون

Abaranji, Sujatha
Panchabikesan, Karthik
Ramalingam, Velraj

المصدر

International Journal of Photoenergy

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-24، 24ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-12-19

دولة النشر

مصر

عدد الصفحات

24

التخصصات الرئيسية

الكيمياء

الملخص EN

Building cooling is achieved by the extensive use of air conditioners.

These mechanically driven devices provide thermal comfort by deteriorating the environment with increased energy consumption.

To alleviate environmental degradation, the need for energy-efficient and eco-friendly systems for building cooling becomes essential.

Evaporative cooling, a typical passive cooling technique, could meet the energy demand and global climatic issues.

In conventional direct evaporative cooling, the sensible cooling of air is achieved by continuous water circulation over the cooling pad.

Despite its simple operation, the problem of the pad material and water stagnation in the sump limits its usage.

Moreover, the continuous pump operation increases the electrical energy consumption.

In the present work, a porous material is used as the water storage medium eliminating the pump and sump.

An experimental investigation is performed on the developed setup, and experiments are conducted for three different RH conditions (low, medium, and high) to assess the porous material’s ability as a cooling medium.

Cooling capacity, effectiveness, and water evaporation rate are determined to evaluate the direct evaporative cooling system’s performance.

The material that replaces the pump and sump is vermicompost due to its excellent water retention characteristics.

There is no necessity to change material each time.

However, the vermicompost is regenerated at the end of the experiment using a solar dryer.

The passing of hot air over the vermicompost also avoids mould spores’ transmission, if any, present through the air.

The results show that vermicompost produces an average temperature drop of 9.5°C during low RH conditions.

Besides, vermicompost helps with the energy savings of 21.7% by eliminating the pump.

Hence, vermicompost could be an alternate energy-efficient material to replace the pad-pump-sump of the conventional evaporative cooling system.

Further, if this direct evaporative cooling system is integrated with solar-assisted drying of vermicompost, it is possible to provide a clean and sustainable indoor environment.

This system could pave the way for year-round thermal management of building cooling applications with environmental safety.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Abaranji, Sujatha& Panchabikesan, Karthik& Ramalingam, Velraj. 2020. Experimental Investigation of a Direct Evaporative Cooling System for Year-Round Thermal Management with Solar-Assisted Dryer. International Journal of Photoenergy،Vol. 2020, no. 2020, pp.1-24.
https://search.emarefa.net/detail/BIM-1173190

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Abaranji, Sujatha…[et al.]. Experimental Investigation of a Direct Evaporative Cooling System for Year-Round Thermal Management with Solar-Assisted Dryer. International Journal of Photoenergy No. 2020 (2020), pp.1-24.
https://search.emarefa.net/detail/BIM-1173190

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Abaranji, Sujatha& Panchabikesan, Karthik& Ramalingam, Velraj. Experimental Investigation of a Direct Evaporative Cooling System for Year-Round Thermal Management with Solar-Assisted Dryer. International Journal of Photoenergy. 2020. Vol. 2020, no. 2020, pp.1-24.
https://search.emarefa.net/detail/BIM-1173190

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1173190