Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives

المؤلفون المشاركون

Melaku, Yadessa
Zeleke, Digafie
Eswaramoorthy, Rajalakshmanan
Belay, Zerihun

المصدر

Journal of Chemistry

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-16، 16ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-07-24

دولة النشر

مصر

عدد الصفحات

16

التخصصات الرئيسية

الكيمياء

الملخص EN

2-Chloroquinoline-3-carbaldehyde and 2-chloro-8-methylquinoline-3-carbaldehyde derivatives were synthesized through Vilsmeier formulation of acetanilide and N-(o-tolyl)acetamide.

Aromatic nucleophilic substitution reaction was used to introduce various nucleophiles in place of chlorine under different reaction conditions.

The carbaldehyde group was oxidized by permanganate method and reduced with metallic sodium in methanol and ethanol.

The synthesized compounds were characterized by UV-Vis, IR, and NMR.

The antibacterial activity of the synthesized compounds was screened against two Gram-positive bacteria (Bacillus subtilis ATCC6633 and Staphylococcus aureus ATCC25923) and two Gram-negative bacteria (Escherichia coli ATCC 25922 and Pseudomonas aeruginosa ATCC 27853).

Most of the compounds displayed potent activity against two or more bacterial strains.

Among them, compounds 6 and 15 showed maximum activity against Pseudomonas aeruginosa with mean inhibition zones of 9.67 ± 1.11 and 10.00 ± 0.44 mm, respectively, while ciprofloxacin showed mean inhibition zone of 8.33 ± 0.44 mm at similar concentration.

On the other hand, compound 8 exhibited maximum activity against Escherichia coli with inhibition zones of about 9.00 ± 0.55 mm at 300 μg/mL and 11.33 ± 1.11 mm at 500 μg/mL.

The radical scavenging activity of these compounds was evaluated using 1,1-diphenyl-2-picryl hydrazyl (DPPH), and all of them displayed moderate antioxidant activity, with compound 7 exhibiting the strongest activity.

The molecular docking study of the synthesized compounds was conducted to investigate their binding pattern with DNA gyrase, all of them were found to have minimum binding energy ranging from –6.0 to –7.33 kcal/mol, and the best result was achieved with compound 11.

The findings of the in vitro antibacterial and molecular docking analysis demonstrated that the synthesized compounds have potential of antibacterial activity and can be further optimized to serve as lead compounds.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Zeleke, Digafie& Eswaramoorthy, Rajalakshmanan& Belay, Zerihun& Melaku, Yadessa. 2020. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. Journal of Chemistry،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1181328

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Zeleke, Digafie…[et al.]. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. Journal of Chemistry No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1181328

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Zeleke, Digafie& Eswaramoorthy, Rajalakshmanan& Belay, Zerihun& Melaku, Yadessa. Synthesis and Antibacterial, Antioxidant, and Molecular Docking Analysis of Some Novel Quinoline Derivatives. Journal of Chemistry. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1181328

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1181328