An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes

المؤلفون المشاركون

Asadnia, Mohsen
Khorasani, Amir Mahyar
Warkiani, Majid Ebrahimi

المصدر

Journal of Nanomaterials

العدد

المجلد 2017، العدد 2017 (31 ديسمبر/كانون الأول 2017)، ص ص. 1-6، 6ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2017-09-06

دولة النشر

مصر

عدد الصفحات

6

التخصصات الرئيسية

الكيمياء
هندسة مدنية

الملخص EN

By combining particle swarm optimization (PSO) and genetic algorithms (GA) this paper offers an innovative algorithm to train artificial neural networks (ANNs) for the purpose of calculating the experimental growth parameters of CNTs.

The paper explores experimentally obtaining data to train ANNs, as a method to reduce simulation time while ensuring the precision of formal physics models.

The results are compared with conventional particle swarm optimization based neural network (CPSONN) and Levenberg–Marquardt (LM) techniques.

The results show that PSOGANN can be successfully utilized for modeling the experimental parameters that are critical for the growth of CNTs.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Asadnia, Mohsen& Khorasani, Amir Mahyar& Warkiani, Majid Ebrahimi. 2017. An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes. Journal of Nanomaterials،Vol. 2017, no. 2017, pp.1-6.
https://search.emarefa.net/detail/BIM-1183866

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Asadnia, Mohsen…[et al.]. An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes. Journal of Nanomaterials No. 2017 (2017), pp.1-6.
https://search.emarefa.net/detail/BIM-1183866

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Asadnia, Mohsen& Khorasani, Amir Mahyar& Warkiani, Majid Ebrahimi. An Accurate PSO-GA Based Neural Network to Model Growth of Carbon Nanotubes. Journal of Nanomaterials. 2017. Vol. 2017, no. 2017, pp.1-6.
https://search.emarefa.net/detail/BIM-1183866

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1183866