Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles

المؤلفون المشاركون

Chi, Mao-Ru
Dai, Liangcheng
Gao, Hongxing
Yang, Jungang
Zhou, Xiaozhi

المصدر

Mathematical Problems in Engineering

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-23، 23ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-01-06

دولة النشر

مصر

عدد الصفحات

23

التخصصات الرئيسية

هندسة مدنية

الملخص EN

The objective of this paper is to establish an accurate nonlinear mathematical model of the hydraulic damper during the orifice-working stage.

A new mathematical model including the submodels of the orifices, hydraulic fluids, pressure chambers, and reservoir chambers is established based on theories of the fluid mechanics, hydropneumatics, and mechanics.

Subsequently, a force element based on the established model of the hydraulic damper which contains 56 inputs, 6 force states, and 47 outputs is developed with the FORTRAN language in the secondary development environment of the multibody dynamics software SIMPACK.

Using the force element, the damping characteristics of the modified yaw damper with different diameters of the base orifice are calculated under different amplitudes and frequencies of the sine excitation, and then the simulation results are compared with the experimental results which are obtained under the same conditions.

Results show that during the orifice-working stage, the new established mathematical model can accurately reproduce the nonlinear static and dynamic characteristics of hydraulic dampers such as the force-displacement characteristic, force-velocity characteristic, fluid shortage, hysteresis effect, and pressure limited effect.

Furthermore, it also shows that the nonlinear characteristics of the orifice, air release, cavitation, leakage for high frequencies, and dynamic characteristics of fluid (i.e., the density, bulk modulus, and air/gas content) should be taken seriously during the modelling of the hydraulic damper at the orifice-working stage.

The mathematical model proposed in this paper is more applicable to the railway vehicle system dynamics and individual system description of the hydraulic damper.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Gao, Hongxing& Chi, Mao-Ru& Dai, Liangcheng& Yang, Jungang& Zhou, Xiaozhi. 2020. Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles. Mathematical Problems in Engineering،Vol. 2020, no. 2020, pp.1-23.
https://search.emarefa.net/detail/BIM-1193559

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Gao, Hongxing…[et al.]. Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles. Mathematical Problems in Engineering No. 2020 (2020), pp.1-23.
https://search.emarefa.net/detail/BIM-1193559

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Gao, Hongxing& Chi, Mao-Ru& Dai, Liangcheng& Yang, Jungang& Zhou, Xiaozhi. Mathematical Modelling and Computational Simulation of the Hydraulic Damper during the Orifice-Working Stage for Railway Vehicles. Mathematical Problems in Engineering. 2020. Vol. 2020, no. 2020, pp.1-23.
https://search.emarefa.net/detail/BIM-1193559

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1193559