Local Discontinuous Galerkin Method for Nonlinear Time-Space Fractional SubdiffusionSuperdiffusion Equations

المؤلفون المشاركون

Qiu, Meilan
Li, Dewang
Wu, Yanyun

المصدر

Mathematical Problems in Engineering

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-21، 21ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-06-22

دولة النشر

مصر

عدد الصفحات

21

التخصصات الرئيسية

هندسة مدنية

الملخص EN

Fractional partial differential equations with time-space fractional derivatives describe some important physical phenomena.

For example, the subdiffusion equation (time order 0<α<1) is more suitable to describe the phenomena of charge carrier transport in amorphous semiconductors, nuclear magnetic resonance (NMR) diffusometry in percolative, Rouse, or reptation dynamics in polymeric systems, the diffusion of a scalar tracer in an array of convection rolls, or the dynamics of a bead in a polymeric network, and so on.

However, the superdiffusion case (1<α<2) is more accurate to depict the special domains of rotating flows, collective slip diffusion on solid surfaces, layered velocity fields, Richardson turbulent diffusion, bulk-surface exchange controlled dynamics in porous glasses, the transport in micelle systems and heterogeneous rocks, quantum optics, single molecule spectroscopy, the transport in turbulent plasma, bacterial motion, and even for the flight of an albatross (for more physical applications of fractional sub-super diffusion equations, one can see Metzler and Klafter in 2000).

In this work, we establish two fully discrete numerical schemes for solving a class of nonlinear time-space fractional subdiffusion/superdiffusion equations by using backward Euler difference 1<α<2 or second-order central difference 1<α<2/local discontinuous Galerkin finite element mixed method.

By introducing the mathematical induction method, we show the concrete analysis for the stability and the convergence rate under the L2 norm of the two LDG schemes.

In the end, we adopt several numerical experiments to validate the proposed model and demonstrate the features of the two numerical schemes, such as the optimal convergence rate in space direction is close to Ohk+1.

The convergence rate in time direction can arrive at Oτ2−α when the fractional derivative is 0<α<1.

If the fractional derivative parameter is 1<α<2 and we choose the relationship as h=C′τ (h denotes the space step size, C′ is a constant, and τ is the time step size), then the time convergence rate can reach to Oτ3−α.

The experiment results illustrate that the proposed method is effective in solving nonlinear time-space fractional subdiffusion/superdiffusion equations.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Qiu, Meilan& Li, Dewang& Wu, Yanyun. 2020. Local Discontinuous Galerkin Method for Nonlinear Time-Space Fractional SubdiffusionSuperdiffusion Equations. Mathematical Problems in Engineering،Vol. 2020, no. 2020, pp.1-21.
https://search.emarefa.net/detail/BIM-1197479

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Qiu, Meilan…[et al.]. Local Discontinuous Galerkin Method for Nonlinear Time-Space Fractional SubdiffusionSuperdiffusion Equations. Mathematical Problems in Engineering No. 2020 (2020), pp.1-21.
https://search.emarefa.net/detail/BIM-1197479

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Qiu, Meilan& Li, Dewang& Wu, Yanyun. Local Discontinuous Galerkin Method for Nonlinear Time-Space Fractional SubdiffusionSuperdiffusion Equations. Mathematical Problems in Engineering. 2020. Vol. 2020, no. 2020, pp.1-21.
https://search.emarefa.net/detail/BIM-1197479

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1197479