Unbalance Compensation of a Full Scale Test Rig Designed for HTR-10GT: A Frequency-Domain Approach Based on Iterative Learning Control

المؤلفون المشاركون

Shi, Lei
Sun, Zhe
Shi, Zhengang
He, Ying

المصدر

Science and Technology of Nuclear Installations

العدد

المجلد 2017، العدد 2017 (31 ديسمبر/كانون الأول 2017)، ص ص. 1-15، 15ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2017-01-26

دولة النشر

مصر

عدد الصفحات

15

الملخص EN

Unbalance vibrations are crucial problems in heavy rotational machinery, especially for the systems with high operation speed, like turbine machinery.

For the program of 10 MW High Temperature gas-cooled Reactor with direct Gas-Turbine cycle (HTR-10GT), the rated operation speed of the turbine system is 15000 RPM which is beyond the second bending frequency.

In that case, even a small residual mass will lead to large unbalance vibrations.

Thus, it is of great significance to study balancing methods for the system.

As the turbine rotor is designed to be suspended by active magnetic bearings (AMBs), unbalance compensation could be achieved by adequate control strategies.

In the paper, unbalance compensation for the Multi-Input and Multi-Output (MIMO) active magnetic bearing (AMB) system using frequency-domain iterative learning control (ILC) is analyzed.

Based on the analysis, an ILC controller for unbalance compensation of the full scale test rig, which is designed for the rotor and AMBs in HTR-10GT, is designed.

Simulation results are reported which show the efficiency of the ILC controller for attenuating the unbalance vibration of the full scale test rig.

This research can offer valuable design criterion for unbalance compensation of the turbine machinery in HTR-10GT.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

He, Ying& Shi, Lei& Shi, Zhengang& Sun, Zhe. 2017. Unbalance Compensation of a Full Scale Test Rig Designed for HTR-10GT: A Frequency-Domain Approach Based on Iterative Learning Control. Science and Technology of Nuclear Installations،Vol. 2017, no. 2017, pp.1-15.
https://search.emarefa.net/detail/BIM-1203643

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

He, Ying…[et al.]. Unbalance Compensation of a Full Scale Test Rig Designed for HTR-10GT: A Frequency-Domain Approach Based on Iterative Learning Control. Science and Technology of Nuclear Installations No. 2017 (2017), pp.1-15.
https://search.emarefa.net/detail/BIM-1203643

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

He, Ying& Shi, Lei& Shi, Zhengang& Sun, Zhe. Unbalance Compensation of a Full Scale Test Rig Designed for HTR-10GT: A Frequency-Domain Approach Based on Iterative Learning Control. Science and Technology of Nuclear Installations. 2017. Vol. 2017, no. 2017, pp.1-15.
https://search.emarefa.net/detail/BIM-1203643

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1203643