Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway

المؤلفون المشاركون

Li, Xiaomu
Zhao, Jian-Lan
Tan, Bo
Chen, Gong
Che, Xiao-Ming
Du, Zhuo-Ying
Yuan, Qiang
Yu, Jian
Sun, Yi-Rui
Hu, Jin
Xie, Rong

المصدر

Oxidative Medicine and Cellular Longevity

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-12، 12ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-10-13

دولة النشر

مصر

عدد الصفحات

12

التخصصات الرئيسية

الأحياء

الملخص EN

The underlying molecular mechanisms that the hypoxic microenvironment could aggravate neuronal injury are still not clear.

In this study, we hypothesized that the exosomes, exosomal miRNAs, and the mTOR signaling pathway might be involved in hypoxic peritumoral neuronal injury in glioma.

Multimodal radiological images, HE, and HIF-1α staining of high-grade glioma (HGG) samples revealed that the peritumoral hypoxic area overlapped with the cytotoxic edema region and directly contacted with normal neurons.

In either direct or indirect coculture system, hypoxia could promote normal mouse hippocampal neuronal cell (HT22) injury, and the growth of HT22 cells was suppressed by C6 glioma cells under hypoxic condition.

For administrating hypoxia-induced glioma-derived exosomes (HIGDE) that could aggravate oxygen-glucose deprivation (OGD)/reperfusion neuronal injury, we identified that exosomes may be the communication medium between glioma cells and peritumoral neurons, and we furtherly found that exosomal miR-199a-3p mediated the OGD/reperfusion neuronal injury process by suppressing the mTOR signaling pathway.

Moreover, the upregulation of miRNA-199a-3p in exosomes from glioma cells was induced by hypoxia-related HIF-1α activation.

To sum up, hypoxia-induced glioma-derived exosomal miRNA-199a-3p can be upregulated by the activation of HIF-1α and is able to increase the ischemic injury of peritumoral neurons by inhibiting the mTOR pathway.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Zhao, Jian-Lan& Tan, Bo& Chen, Gong& Che, Xiao-Ming& Du, Zhuo-Ying& Yuan, Qiang…[et al.]. 2020. Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1204896

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Zhao, Jian-Lan…[et al.]. Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-12.
https://search.emarefa.net/detail/BIM-1204896

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Zhao, Jian-Lan& Tan, Bo& Chen, Gong& Che, Xiao-Ming& Du, Zhuo-Ying& Yuan, Qiang…[et al.]. Hypoxia-Induced Glioma-Derived Exosomal miRNA-199a-3p Promotes Ischemic Injury of Peritumoral Neurons by Inhibiting the mTOR Pathway. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-12.
https://search.emarefa.net/detail/BIM-1204896

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1204896