Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant

المؤلفون المشاركون

Higashi, Tatsuya
Bakalova, Rumiana
Zhelev, Zhivko
Miller, Thomas
Lazarova, Dessislava
Semkova, Severina
Ivanova, Donika
Takeshima, Tsuguhide
Shibata, Sayaka
Aoki, Ichio

المصدر

Oxidative Medicine and Cellular Longevity

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-30، 30ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-11-02

دولة النشر

مصر

عدد الصفحات

30

التخصصات الرئيسية

الأحياء

الملخص EN

Redox-active substances and their combinations, such as of quinone/ascorbate and in particular menadione/ascorbate (M/A; also named Apatone®), attract attention with their unusual ability to kill cancer cells without affecting the viability of normal cells as well as with the synergistic anticancer effect of both molecules.

So far, the primary mechanism of M/A-mediated anticancer effects has not been linked to the mitochondria.

The aim of our study was to clarify whether this “combination drug” affects mitochondrial functionality specifically in cancer cells.

Studies were conducted on cancer cells (Jurkat, Colon26, and MCF7) and normal cells (normal lymphocytes, FHC, and MCF10A), treated with different concentrations of menadione, ascorbate, and/or their combination (2/200, 3/300, 5/500, 10/1000, and 20/2000 μM/μM of M/A).

M/A exhibited highly specific and synergistic suppression on cancer cell growth but without adversely affecting the viability of normal cells at pharmacologically attainable concentrations.

In M/A-treated cancer cells, the cytostatic/cytotoxic effect is accompanied by (i) extremely high production of mitochondrial superoxide (up to 15-fold over the control level), (ii) a significant decrease of mitochondrial membrane potential, (iii) a decrease of the steady-state levels of ATP, succinate, NADH, and NAD+, and (iv) a decreased expression of programed cell death ligand 1 (PD-L1)—one of the major immune checkpoints.

These effects were dose dependent.

The inhibition of NQO1 by dicoumarol increased mitochondrial superoxide and sensitized cancer cells to M/A.

In normal cells, M/A induced relatively low and dose-independent increase of mitochondrial superoxide and mild oxidative stress, which seems to be well tolerated.

These data suggest that all anticancer effects of M/A result from a specific mechanism, tightly connected to the mitochondria of cancer cells.

At low/tolerable doses of M/A (1/100-3/300 μM/μM) attainable in cancer by oral and parenteral administration, M/A sensitized cancer cells to conventional anticancer drugs, exhibiting synergistic or additive cytotoxicity accompanied by impressive induction of apoptosis.

Combinations of M/A with 13 anticancer drugs were investigated (ABT-737, barasertib, bleomycin, BEZ-235, bortezomib, cisplatin, everolimus, lomustine, lonafarnib, MG-132, MLN-2238, palbociclib, and PI-103).

Low/tolerable doses of M/A did not induce irreversible cytotoxicity in cancer cells but did cause irreversible metabolic changes, including: (i) a decrease of succinate and NADH, (ii) depolarization of the mitochondrial membrane, and (iii) overproduction of superoxide in the mitochondria of cancer cells only.

In addition, M/A suppressed tumor growth in vivo after oral administration in mice with melanoma and the drug downregulated PD-L1 in melanoma cells.

Experimental data suggest a great potential for beneficial anticancer effects of M/A through increasing the sensitivity of cancer cells to conventional anticancer therapy, as well as to the immune system, while sparing normal cells.

We hypothesize that M/A-mediated anticancer effects are triggered by redox cycling of both substances, specifically within dysfunctional mitochondria.

M/A may also have a beneficial effect on the immune system, making cancer cells “visible” and more vulnerable to the native immune response.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Bakalova, Rumiana& Semkova, Severina& Ivanova, Donika& Zhelev, Zhivko& Miller, Thomas& Takeshima, Tsuguhide…[et al.]. 2020. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxidative Medicine and Cellular Longevity،Vol. 2020, no. 2020, pp.1-30.
https://search.emarefa.net/detail/BIM-1205080

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Bakalova, Rumiana…[et al.]. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxidative Medicine and Cellular Longevity No. 2020 (2020), pp.1-30.
https://search.emarefa.net/detail/BIM-1205080

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Bakalova, Rumiana& Semkova, Severina& Ivanova, Donika& Zhelev, Zhivko& Miller, Thomas& Takeshima, Tsuguhide…[et al.]. Selective Targeting of Cancerous Mitochondria and Suppression of Tumor Growth Using Redox-Active Treatment Adjuvant. Oxidative Medicine and Cellular Longevity. 2020. Vol. 2020, no. 2020, pp.1-30.
https://search.emarefa.net/detail/BIM-1205080

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1205080