Hypoxia-Preconditioned Wharton’s Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System

المؤلفون المشاركون

Keshtkar, Somayeh
Kaviani, Maryam
Jabbarpour, Zahra
Sabet Sarvestani, Fatemeh
Ghahremani, Mohammad Hossein
Esfandiari, Elaheh
Hossein Aghdaei, Mahdokht
Nikeghbalian, Saman
Shamsaeefar, Alireza
Geramizadeh, Bita
Azarpira, Negar

المصدر

Stem Cells International

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-14، 14ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-12-17

دولة النشر

مصر

عدد الصفحات

14

الملخص EN

Protection of isolated pancreatic islets against hypoxic and oxidative damage-induced apoptosis is essential during a pretransplantation culture period.

A beneficial approach to maintain viable and functional islets is the coculture period with mesenchymal stem cells (MSCs).

Hypoxia preconditioning of MSCs (Hpc-MSCs) for a short time stimulates the expression and secretion of antiapoptotic, antioxidant, and prosurvival factors.

The aim of the present study was to evaluate the survival and function of human islets cocultured with Hpc-MSCs.

Wharton’s jelly-derived MSCs were subjected to hypoxia (5% O2: Hpc) or normoxia (20% O2: Nc) for 24 hours and then cocultured with isolated human islets in direct and indirect systems.

Assays of viability and apoptosis, along with the production of reactive oxygen species (ROS), hypoxia-inducible factor 1-alpha (HIF-1α), apoptotic pathway markers, and vascular endothelial growth factor (VEGF) in the islets, were performed.

Insulin and C-peptide secretions as islet function were also evaluated.

Hpc-MSCs and Nc-MSCs significantly reduced the ROS production and HIF-1α protein aggregation, as well as downregulation of proapoptotic proteins and upregulation of antiapoptotic marker along with increment of VEGF secretion in the cocultured islet.

However, the Hpc-MSCs groups were better than Nc-MSCs cocultured islets.

Hpc-MSCs in both direct and indirect coculture systems improved the islet survival, while promotion of function was only significant in the direct cocultured cells.

Hpc potentiated the cytoprotective and insulinotropic effects of MSCs on human islets through reducing stressful markers, inhibiting apoptosis pathway, enhancing prosurvival factors, and promoting insulin secretion, especially in direct coculture system, suggesting the effective strategy to ameliorate the islet quality for better transplantation outcomes.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Keshtkar, Somayeh& Kaviani, Maryam& Jabbarpour, Zahra& Sabet Sarvestani, Fatemeh& Ghahremani, Mohammad Hossein& Esfandiari, Elaheh…[et al.]. 2020. Hypoxia-Preconditioned Wharton’s Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells International،Vol. 2020, no. 2020, pp.1-14.
https://search.emarefa.net/detail/BIM-1207998

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Keshtkar, Somayeh…[et al.]. Hypoxia-Preconditioned Wharton’s Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells International No. 2020 (2020), pp.1-14.
https://search.emarefa.net/detail/BIM-1207998

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Keshtkar, Somayeh& Kaviani, Maryam& Jabbarpour, Zahra& Sabet Sarvestani, Fatemeh& Ghahremani, Mohammad Hossein& Esfandiari, Elaheh…[et al.]. Hypoxia-Preconditioned Wharton’s Jelly-Derived Mesenchymal Stem Cells Mitigate Stress-Induced Apoptosis and Ameliorate Human Islet Survival and Function in Direct Contact Coculture System. Stem Cells International. 2020. Vol. 2020, no. 2020, pp.1-14.
https://search.emarefa.net/detail/BIM-1207998

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1207998