Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver

المؤلفون المشاركون

Shan, Jianqiang
Wu, Pan
Gao, Chuntian
Huang, Yanping
Zhang, Dan

المصدر

Science and Technology of Nuclear Installations

العدد

المجلد 2020، العدد 2020 (31 ديسمبر/كانون الأول 2020)، ص ص. 1-16، 16ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2020-01-24

دولة النشر

مصر

عدد الصفحات

16

الملخص EN

Coupling supercritical carbon dioxide (S-CO2) Brayton cycle with Gen-IV reactor concepts could bring advantages of high compactness and efficiency.

This study aims to design proper simple and recompression S-CO2 Brayton cycles working as the indirect cooling system for a mediate-temperature lead fast reactor and quantify the Brayton cycle performance with different heat rejection temperatures (from 32°C to 55°C) to investigate its potential use in different scenarios, like arid desert areas or areas with abundant water supply.

High-efficiency S-CO2 Brayton cycle could offset the power conversion efficiency decrease caused by low core outlet temperature (which is 480°C in this study) and high compressor inlet temperature (which varies from 32°C to 55°C in this study).

A thermodynamic analysis solver is developed to provide the analysis tool.

The solver includes turbomachinery models for compressor and turbine and heat exchanger models for recuperator and precooler.

The optimal design of simple Brayton cycle and recompression Brayton cycle for the lead fast reactor under water-cooled and dry-cooled conditions are carried out with consideration of recuperator temperature difference constraints and cycle efficiency.

Optimal cycle efficiencies of 40.48% and 35.9% can be achieved for the recompression Brayton cycle and simple Brayton cycle under water-cooled condition.

Optimal cycle efficiencies of 34.36% and 32.6% can be achieved for the recompression Brayton cycle and simple Brayton cycle under dry-cooled condition (compressor inlet temperature equals to 55°C).

Increasing the dry cooling flow rate will be helpful to decrease the compressor inlet temperature.

Every 5°C decrease in the compressor inlet temperature will bring 1.2% cycle efficiency increase for the recompression Brayton cycle and 0.7% cycle efficiency increase for the simple Brayton cycle.

Helpful conclusions and advises are proposed for designing the Brayton cycle for mediate-temperature nuclear applications in this paper.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Wu, Pan& Gao, Chuntian& Huang, Yanping& Zhang, Dan& Shan, Jianqiang. 2020. Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver. Science and Technology of Nuclear Installations،Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1209456

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Wu, Pan…[et al.]. Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver. Science and Technology of Nuclear Installations No. 2020 (2020), pp.1-16.
https://search.emarefa.net/detail/BIM-1209456

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Wu, Pan& Gao, Chuntian& Huang, Yanping& Zhang, Dan& Shan, Jianqiang. Supercritical CO2 Brayton Cycle Design for Small Modular Reactor with a Thermodynamic Analysis Solver. Science and Technology of Nuclear Installations. 2020. Vol. 2020, no. 2020, pp.1-16.
https://search.emarefa.net/detail/BIM-1209456

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-1209456