Scaffold Library for Tissue Engineering : A Geometric Evaluation

المؤلفون المشاركون

Sucharitpwatskul, Sedthawatt
Jeamwatthanachai, Pongnarin
Inglam, Samroeng
Puttawibul, Puttisak
Chantarapanich, Nattapon
Sitthiseripratip, Kriskrai

المصدر

Computational and Mathematical Methods in Medicine

العدد

المجلد 2012، العدد 2012 (31 ديسمبر/كانون الأول 2012)، ص ص. 1-14، 14ص.

الناشر

Hindawi Publishing Corporation

تاريخ النشر

2012-09-26

دولة النشر

مصر

عدد الصفحات

14

التخصصات الرئيسية

الطب البشري

الملخص EN

Tissue engineering scaffold is a biological substitute that aims to restore, to maintain, or to improve tissue functions.

Currently available manufacturing technology, that is, additive manufacturing is essentially applied to fabricate the scaffold according to the predefined computer aided design (CAD) model.

To develop scaffold CAD libraries, the polyhedrons could be used in the scaffold libraries development.

In this present study, one hundred and nineteen polyhedron models were evaluated according to the established criteria.

The proposed criteria included considerations on geometry, manufacturing feasibility, and mechanical strength of these polyhedrons.

CAD and finite element (FE) method were employed as tools in evaluation.

The result of evaluation revealed that the close-cellular scaffold included truncated octahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron.

In addition, the suitable polyhedrons for using as open-cellular scaffold libraries included hexahedron, truncated octahedron, truncated hexahedron, cuboctahedron, rhombicuboctahedron, and rhombitruncated cuboctahedron.

However, not all pore size to beam thickness ratios (PO : BT) were good for making the open-cellular scaffold.

The PO : BT ratio of each library, generating the enclosed pore inside the scaffold, was excluded to avoid the impossibility of material removal after the fabrication.

The close-cellular libraries presented the constant porosity which is irrespective to the different pore sizes.

The relationship between PO : BT ratio and porosity of open-cellular scaffold libraries was displayed in the form of Logistic Power function.

The possibility of merging two different types of libraries to produce the composite structure was geometrically evaluated in terms of the intersection index and was mechanically evaluated by means of FE analysis to observe the stress level.

The couples of polyhedrons presenting low intersection index and high stress level were excluded.

Good couples for producing the reinforced scaffold were hexahedron-truncated hexahedron and cuboctahedron-rhombitruncated cuboctahedron.

نمط استشهاد جمعية علماء النفس الأمريكية (APA)

Chantarapanich, Nattapon& Puttawibul, Puttisak& Sucharitpwatskul, Sedthawatt& Jeamwatthanachai, Pongnarin& Inglam, Samroeng& Sitthiseripratip, Kriskrai. 2012. Scaffold Library for Tissue Engineering : A Geometric Evaluation. Computational and Mathematical Methods in Medicine،Vol. 2012, no. 2012, pp.1-14.
https://search.emarefa.net/detail/BIM-469722

نمط استشهاد الجمعية الأمريكية للغات الحديثة (MLA)

Chantarapanich, Nattapon…[et al.]. Scaffold Library for Tissue Engineering : A Geometric Evaluation. Computational and Mathematical Methods in Medicine No. 2012 (2012), pp.1-14.
https://search.emarefa.net/detail/BIM-469722

نمط استشهاد الجمعية الطبية الأمريكية (AMA)

Chantarapanich, Nattapon& Puttawibul, Puttisak& Sucharitpwatskul, Sedthawatt& Jeamwatthanachai, Pongnarin& Inglam, Samroeng& Sitthiseripratip, Kriskrai. Scaffold Library for Tissue Engineering : A Geometric Evaluation. Computational and Mathematical Methods in Medicine. 2012. Vol. 2012, no. 2012, pp.1-14.
https://search.emarefa.net/detail/BIM-469722

نوع البيانات

مقالات

لغة النص

الإنجليزية

الملاحظات

Includes bibliographical references

رقم السجل

BIM-469722