A Combination of Radiosurgery and Soluble Tissue Factor Enhances Vascular Targeting for Experimental Glioblastoma

Joint Authors

Chen, Zhongbin
Hu, Zhiqiang
Tu, Jian

Source

BioMed Research International

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-11-06

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Medicine

Abstract EN

Radiosurgery for glioblastoma is limited to the development of resistance, allowing tumor cells to survive and initiate tumor recurrence.

Based on our previous work that coadministration of tissue factor and lipopolysaccharide following radiosurgery selectively induced thrombosis in cerebral arteriovenous malformations, achieving thrombosis of 69% of the capillaries and 39% of medium sized vessels, we hypothesized that a rapid and selective shutdown of the capillaries in glioblastoma vasculature would decrease the delivery of oxygen and nutrients, reducing tumor growth, preventing intracranial hypertension, and improving life expectancy.

Glioblastoma was formed by implantation of GL261 cells into C57Bl/6 mouse brain.

Mice were intravenously injected tissue factor, lipopolysaccharide, a combination of both, or placebo 24 hours after radiosurgery.

Control mice received both agents after sham irradiation.

Coadministration of tissue factor and lipopolysaccharide led to the formation of thrombi in up to 87 ± 8% of the capillaries and 46 ± 4% of medium sized vessels within glioblastoma.

The survival rate of mice in this group was 80% versus no survivor in placebo controls 30 days after irradiation.

Animal body weight increased with time in this group (r=0.88, P=0.0001).

Thus, radiosurgery enhanced treatment with tissue factor, and lipopolysaccharide selectively induces thrombosis in glioblastoma vasculature, improving life expectancy.

American Psychological Association (APA)

Tu, Jian& Hu, Zhiqiang& Chen, Zhongbin. 2013. A Combination of Radiosurgery and Soluble Tissue Factor Enhances Vascular Targeting for Experimental Glioblastoma. BioMed Research International،Vol. 2013, no. 2013, pp.1-11.
https://search.emarefa.net/detail/BIM-1030501

Modern Language Association (MLA)

Tu, Jian…[et al.]. A Combination of Radiosurgery and Soluble Tissue Factor Enhances Vascular Targeting for Experimental Glioblastoma. BioMed Research International No. 2013 (2013), pp.1-11.
https://search.emarefa.net/detail/BIM-1030501

American Medical Association (AMA)

Tu, Jian& Hu, Zhiqiang& Chen, Zhongbin. A Combination of Radiosurgery and Soluble Tissue Factor Enhances Vascular Targeting for Experimental Glioblastoma. BioMed Research International. 2013. Vol. 2013, no. 2013, pp.1-11.
https://search.emarefa.net/detail/BIM-1030501

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1030501