A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies

Joint Authors

Magosso, Elisa
Ursino, Mauro
Cona, Filippo

Source

BioMed Research International

Issue

Vol. 2013, Issue 2013 (31 Dec. 2013), pp.1-17, 17 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2013-10-21

Country of Publication

Egypt

No. of Pages

17

Main Subjects

Medicine

Abstract EN

Exposure to synchronous but spatially disparate auditory and visual stimuli produces a perceptual shift of sound location towards the visual stimulus (ventriloquism effect).

After adaptation to a ventriloquism situation, enduring sound shift is observed in the absence of the visual stimulus (ventriloquism aftereffect).

Experimental studies report opposing results as to aftereffect generalization across sound frequencies varying from aftereffect being confined to the frequency used during adaptation to aftereffect generalizing across some octaves.

Here, we present an extension of a model of visual-auditory interaction we previously developed.

The new model is able to simulate the ventriloquism effect and, via Hebbian learning rules, the ventriloquism aftereffect and can be used to investigate aftereffect generalization across frequencies.

The model includes auditory neurons coding both for the spatial and spectral features of the auditory stimuli and mimicking properties of biological auditory neurons.

The model suggests that different extent of aftereffect generalization across frequencies can be obtained by changing the intensity of the auditory stimulus that induces different amounts of activation in the auditory layer.

The model provides a coherent theoretical framework to explain the apparently contradictory results found in the literature.

Model mechanisms and hypotheses are discussed in relation to neurophysiological and psychophysical data.

American Psychological Association (APA)

Magosso, Elisa& Cona, Filippo& Ursino, Mauro. 2013. A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies. BioMed Research International،Vol. 2013, no. 2013, pp.1-17.
https://search.emarefa.net/detail/BIM-1030578

Modern Language Association (MLA)

Magosso, Elisa…[et al.]. A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies. BioMed Research International No. 2013 (2013), pp.1-17.
https://search.emarefa.net/detail/BIM-1030578

American Medical Association (AMA)

Magosso, Elisa& Cona, Filippo& Ursino, Mauro. A Neural Network Model Can Explain Ventriloquism Aftereffect and Its Generalization across Sound Frequencies. BioMed Research International. 2013. Vol. 2013, no. 2013, pp.1-17.
https://search.emarefa.net/detail/BIM-1030578

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1030578