Effect of adding mixture of (concrete waste and asphalt waste)‎ on the properties of gypseous soil

Other Title(s)

تأثير اضافة مزيج (مخلفات الخرسانة و مخلفات االسفلت)‎ على خصائص التربة الجبسية

Time cited in Arcif : 
2

Joint Authors

Zaydan, Adnan Jayid
Hummadi, Rizgar Ali
Husayn, Sarah Abd Allah

Source

Tikrit Journal of Engineering Sciences

Issue

Vol. 26, Issue 1 (31 Mar. 2019), pp.20-25, 6 p.

Publisher

Tikrit University Colleg of Engineering

Publication Date

2019-03-31

Country of Publication

Iraq

No. of Pages

6

Main Subjects

Civil Engineering

Topics

Abstract EN

The Gypseous soil which is used is taken from Tikrit city in Salah Aldeen governorate and specially from Tikrit University from a depth (1.5-2) m.

It's type is sandy gravely with a small percentage of silt and clay while the percentage of gypsum is (34-36) % .

The tests on soil are standard proctor compaction, direct shear, collapsibility and California bearing ratio.

The number of samples is (70).

The effect of adding concrete waste (2, 4, 6 and 8% ) and waste of Asphalt mixture (2, 4, 6 and 8) % on dry soil, as well as the effect of mixture of the optimum percentages of both additions on the properties of gypseous soil, is the aim of the study.

Adding concrete waste at optimum percentage (6) % causes an increase inmaximum dry density at (16)% and a decrease in optimum moisture content at (5)% .

Whereas adding concrete mixture waste in its optimum percentage (2) % caused a decrease in maximum dry density values with an increase of optimum moisture content, and when adding a mixture of optimum percentage of waste, an increase happened in the M.

D.

D.

(14)% with a decrease in O.

M.

C.

at (4) % .

Adding theoptimum percentage (8) % for both, the value of cohesion increases (100) % when adding concrete waste with an increase in the angle of internal friction (14)% and a decrease in collapsibility in a percentage of (90)% , while adding waste of asphalt mixture shows an increase in cohesion value (112) % with a decrease in the angleof internal friction (2) % and a decrease in collapsibility in a percentage of (90) % , when adding mixture of optimum percentages the value of cohesion increase (108)% with an increase in angle of internal friction (14)% and a decrease in collapsibility in a percentage of (91) % .

Values of California Bearing Ratio in dryand soaked condition increases (49) % when adding (8) % of concrete wastes which is the optimum percentage, while adding waste of asphalt mixture causes a decrease in the value of C.

B.

R.

and the optimum percentage is (2) % , but adding optimum percentages mixture of them causes an increase in values of (52) % in dry condition and (53)% in soaked The Gypseous soil which is used is taken from Tikrit city in Salah Aldeen governorate and specially from Tikrit University from a depth (1.5-2) m.

It's type is sandy gravely with a small percentage of silt and clay while the percentage of gypsum is (34-36) % .

The tests on soil are standard proctor compaction, direct shear, collapsibility and California bearing ratio.

The number of samples is (70).

The effect of adding concrete waste (2, 4, 6 and 8% ) and waste of Asphalt mixture (2, 4, 6 and 8) % on dry soil, as well as the effect of mixture of the optimum percentages of both additions on the properties of gypseous soil, is the aim of the study.

Adding concrete waste at optimum percentage (6) % causes an increase inmaximum dry density at (16)% and a decrease in optimum moisture content at (5)% .

Whereas adding concrete mixture waste in its optimum percentage (2) % caused a decrease in maximum dry density values with an increase of optimum moisture content, and when adding a mixture of optimum percentage of waste, an increase happened in the M.

D.

D.

(14)% with a decrease in O.

M.

C.

at (4) % .

Adding theoptimum percentage (8) % for both, the value of cohesion increases (100) % when adding concrete waste with an increase in the angle of internal friction (14)% and a decrease in collapsibility in a percentage of (90)% , while adding waste of asphalt mixture shows an increase in cohesion value (112) % with a decrease in the angleof internal friction (2) % and a decrease in collapsibility in a percentage of (90) % , when adding mixture of optimum percentages the value of cohesion increase (108)% with an increase in angle of internal friction (14)% and a decrease in collapsibility in a percentage of (91) % .

Values of California Bearing Ratio in dryand soaked condition increases (49) % when adding (8) % of concrete wastes which is the optimum percentage, while adding waste of asphalt mixture causes a decrease in the value of C.

B.

R.

and the optimum percentage is (2) % , but adding optimum percentages mixture of them causes an increase in values of (52) % in dry condition and (53)% in soaked condition.

American Psychological Association (APA)

Zaydan, Adnan Jayid& Husayn, Sarah Abd Allah& Hummadi, Rizgar Ali. 2019. Effect of adding mixture of (concrete waste and asphalt waste) on the properties of gypseous soil. Tikrit Journal of Engineering Sciences،Vol. 26, no. 1, pp.20-25.
https://search.emarefa.net/detail/BIM-1033807

Modern Language Association (MLA)

Zaydan, Adnan Jayid…[et al.]. Effect of adding mixture of (concrete waste and asphalt waste) on the properties of gypseous soil. Tikrit Journal of Engineering Sciences Vol. 26, no. 1 (2019), pp.20-25.
https://search.emarefa.net/detail/BIM-1033807

American Medical Association (AMA)

Zaydan, Adnan Jayid& Husayn, Sarah Abd Allah& Hummadi, Rizgar Ali. Effect of adding mixture of (concrete waste and asphalt waste) on the properties of gypseous soil. Tikrit Journal of Engineering Sciences. 2019. Vol. 26, no. 1, pp.20-25.
https://search.emarefa.net/detail/BIM-1033807

Data Type

Journal Articles

Language

English

Notes

-

Record ID

BIM-1033807