Study of the Polycarbonate-UrethaneMetal Contact in Different Positions during Gait Cycle

Joint Authors

Ibarz, Elena
Gracia, Luis
Gabarre, Sergio
Herrera, Antonio
Mateo, Jesús
Lobo-Escolar, Antonio

Source

BioMed Research International

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-08-27

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Medicine

Abstract EN

Nowadays, a growing number of young and more active patients receive hip replacement.

More strenuous activities in such patients involve higher friction and wear rates, with friction on the bearing surface being crucial to ensure arthroplasty survival in the long term.

Over the last years, the polycarbonate-urethane has offered a feasible alternative to conventional bearings.

A finite element model of a healthy hip joint was developed and adjusted to three gait phases (heel strike, mid-stance, and toe-off), serving as a benchmark for the assessment of the results of joint replacement model.

Three equivalent models were made with the polycarbonate-urethane Tribofit system implanted, one for each of the three gait phases, after reproducing a virtual surgery over the respective healthy models.

Standard body-weight loads were considered: 230% body-weight toe-off, 275% body-weight mid-stance, and 350% body-weight heel strike.

Contact pressures were obtained for the different models.

When comparing the results corresponding to the healthy model to polycarbonate-urethane joint, contact areas are similar and so contact pressures are within a narrower value range.

In conclusion, polycarbonate-urethane characteristics are similar to those of the joint cartilage.

So, it is a favorable alternative to traditional bearing surfaces in total hip arthroplasty, especially in young patients.

American Psychological Association (APA)

Gabarre, Sergio& Herrera, Antonio& Mateo, Jesús& Ibarz, Elena& Lobo-Escolar, Antonio& Gracia, Luis. 2014. Study of the Polycarbonate-UrethaneMetal Contact in Different Positions during Gait Cycle. BioMed Research International،Vol. 2014, no. 2014, pp.1-11.
https://search.emarefa.net/detail/BIM-1034498

Modern Language Association (MLA)

Gabarre, Sergio…[et al.]. Study of the Polycarbonate-UrethaneMetal Contact in Different Positions during Gait Cycle. BioMed Research International No. 2014 (2014), pp.1-11.
https://search.emarefa.net/detail/BIM-1034498

American Medical Association (AMA)

Gabarre, Sergio& Herrera, Antonio& Mateo, Jesús& Ibarz, Elena& Lobo-Escolar, Antonio& Gracia, Luis. Study of the Polycarbonate-UrethaneMetal Contact in Different Positions during Gait Cycle. BioMed Research International. 2014. Vol. 2014, no. 2014, pp.1-11.
https://search.emarefa.net/detail/BIM-1034498

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1034498