Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures

Joint Authors

Sattelmayer, Thomas
Ettner, Florian
Vollmer, Klaus G.

Source

Journal of Combustion

Issue

Vol. 2014, Issue 2014 (31 Dec. 2014), pp.1-14, 14 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2014-05-19

Country of Publication

Egypt

No. of Pages

14

Main Subjects

Chemistry

Abstract EN

In this study the hazardous potential of flammable hydrogen-air mixtures with vertical concentration gradients is investigated numerically.

The computational model is based on the formulation of a reaction progress variable and accounts for both deflagrative flame propagation and autoignition.

The model is able to simulate the deflagration-to-detonation transition (DDT) without resolving all microscopic details of the flow.

It works on relatively coarse grids and shows good agreement with experiments.

It is found that a mixture with a vertical concentration gradient can have a much higher tendency to undergo DDT than a homogeneous mixture of the same hydrogen content.

In addition, the pressure loads occurring can be much higher.

However, the opposite effect can also be observed, with the decisive factor being the geometric boundary conditions.

The model gives insight intodifferent modes of DDT.

Detonations occurring soon after ignition do not necessarily cause the highest pressure loads.

In mixtures with concentration gradient, the highest loads can occur in regions of very low hydrogen content.

These new findings should be considered in future safety studies.

American Psychological Association (APA)

Ettner, Florian& Vollmer, Klaus G.& Sattelmayer, Thomas. 2014. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures. Journal of Combustion،Vol. 2014, no. 2014, pp.1-14.
https://search.emarefa.net/detail/BIM-1039870

Modern Language Association (MLA)

Ettner, Florian…[et al.]. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures. Journal of Combustion No. 2014 (2014), pp.1-14.
https://search.emarefa.net/detail/BIM-1039870

American Medical Association (AMA)

Ettner, Florian& Vollmer, Klaus G.& Sattelmayer, Thomas. Numerical Simulation of the Deflagration-to-Detonation Transition in Inhomogeneous Mixtures. Journal of Combustion. 2014. Vol. 2014, no. 2014, pp.1-14.
https://search.emarefa.net/detail/BIM-1039870

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1039870