Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter

Joint Authors

Vargiu, Attilio Vittorio
Schulz, Robert
Kleinekathöfer, Ulrich
Ruggerone, Paolo

Source

BioMed Research International

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-01-05

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Medicine

Abstract EN

As active part of the major efflux system in E.

coli bacteria, AcrB is responsible for the uptake and pumping of toxic substrates from the periplasm toward the extracellular space.

In combination with the channel protein TolC and membrane fusion protein AcrA, this efflux pump is able to help the bacterium to survive different kinds of noxious compounds.

With the present study we intend to enhance the understanding of the interactions between the domains and monomers, for example, the transduction of mechanical energy from the transmembrane domain into the porter domain, correlated motions of different subdomains within monomers, and cooperative effects between monomers.

To this end, targeted molecular dynamics simulations have been employed either steering the whole protein complex or specific parts thereof.

By forcing only parts of the complex towards specific conformational states, the risk for transient artificial conformations during the simulations is reduced.

Distinct cooperative effects between the monomers in AcrB have been observed.

Possible allosteric couplings have been identified providing microscopic insights that might be exploited to design more efficient inhibitors of efflux systems.

American Psychological Association (APA)

Schulz, Robert& Vargiu, Attilio Vittorio& Ruggerone, Paolo& Kleinekathöfer, Ulrich. 2015. Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter. BioMed Research International،Vol. 2015, no. 2015, pp.1-12.
https://search.emarefa.net/detail/BIM-1055670

Modern Language Association (MLA)

Schulz, Robert…[et al.]. Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter. BioMed Research International No. 2015 (2015), pp.1-12.
https://search.emarefa.net/detail/BIM-1055670

American Medical Association (AMA)

Schulz, Robert& Vargiu, Attilio Vittorio& Ruggerone, Paolo& Kleinekathöfer, Ulrich. Computational Study of Correlated Domain Motions in the AcrB Efflux Transporter. BioMed Research International. 2015. Vol. 2015, no. 2015, pp.1-12.
https://search.emarefa.net/detail/BIM-1055670

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1055670