Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels

Joint Authors

Castro, Chris D.
Quintana, Germán C.

Source

International Journal of Polymer Science

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-10-01

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Physics

Abstract EN

Organic xerogels were functionalized by incorporating sugarcane bagasse lignin from soda pulping black liquor, not used so far in this materials, with the aim of introducing new functional groups on traditional gels that could improve its adsorptive capacity.

Two mixing designs were applied to identify the reactive combinations that allow a well gel formation and to adjust models that predict physical properties.

The designs study five components: resorcinol ( R , 0.04–0.3), lignin ( L , 0.004–0.14), formaldehyde ( F , 0.08–0.17), water ( W , 0.45–0.8), and NaOH ( C , 0.0003–0.0035).

The first experimental design was an extreme vertices design and its results showed shrinkage between 4.3 and 59.7 and a bulk density from 0.54 to 1.3; a mass ratio L R / F near 1.5 was required for gel formation.

In the second design a D-Optimal was used to achieve better adjusted coefficients and incorporate the largest possible amount of lignin in the gels.

Bulk density varies from 0.42 to 0.9, shrinkage varies from 3.42 to 25.35, and specific surface area reaches values of 451.86 m2/g with 13% lignin and 270 m2/g with 27% lignin.

High catalyst content improves lignin dissolution and increase shrinkage and bulk density of xerogels and bulk density.

Lignin contributes to reducing shrinkage and specific surface area due to his compact and rigid structure.

American Psychological Association (APA)

Castro, Chris D.& Quintana, Germán C.. 2015. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels. International Journal of Polymer Science،Vol. 2015, no. 2015, pp.1-11.
https://search.emarefa.net/detail/BIM-1066742

Modern Language Association (MLA)

Castro, Chris D.& Quintana, Germán C.. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels. International Journal of Polymer Science No. 2015 (2015), pp.1-11.
https://search.emarefa.net/detail/BIM-1066742

American Medical Association (AMA)

Castro, Chris D.& Quintana, Germán C.. Mixture Design Approach on the Physical Properties of Lignin-Resorcinol-Formaldehyde Xerogels. International Journal of Polymer Science. 2015. Vol. 2015, no. 2015, pp.1-11.
https://search.emarefa.net/detail/BIM-1066742

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1066742