CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor

Joint Authors

Tian, Mi
Shang, Congxiao

Source

Journal of Nanomaterials

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-6, 6 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-10-19

Country of Publication

Egypt

No. of Pages

6

Main Subjects

Chemistry
Civil Engineering

Abstract EN

Nanostructured carbon was successfully produced by methane cracking in a relatively low-energy cold plasma reactor designed in-house.

A followed thermal treatment was carried out to further enhance its porosity.

The modified plasma carbon was then employed for CO2 adsorption at 25°C.

The as-synthesized plasma carbon and the modified carbon were characterized by BET surface area/pore size analyzer, Raman spectra, and transmission electron microscopy (TEM).

The results show thermal modification pronouncedly improves BET surface area and porosity of PC due to opening up of accessible micro-/mesopores in the graphitic structure and by the removal of amorphous carbons around the graphite surface.

The modified PC displays a higher adsorption capacity at 25°C than that of the commercial activated carbon reported.

The low hydrogen storage capacity of the modified PC indicates that it can be considered for CO2 removal in syngas.

American Psychological Association (APA)

Tian, Mi& Shang, Congxiao. 2015. CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor. Journal of Nanomaterials،Vol. 2015, no. 2015, pp.1-6.
https://search.emarefa.net/detail/BIM-1069202

Modern Language Association (MLA)

Tian, Mi& Shang, Congxiao. CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor. Journal of Nanomaterials No. 2015 (2015), pp.1-6.
https://search.emarefa.net/detail/BIM-1069202

American Medical Association (AMA)

Tian, Mi& Shang, Congxiao. CO2 Storage Properties of Nanostructured Carbons by a Microwave Plasma Reactor. Journal of Nanomaterials. 2015. Vol. 2015, no. 2015, pp.1-6.
https://search.emarefa.net/detail/BIM-1069202

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1069202