Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach

Joint Authors

Fellah Jahromi, Ali
Bhat, Rama B.
Xie, Wen-Fang

Source

Shock and Vibration

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-07-26

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Civil Engineering

Abstract EN

Magnetorheological dampers have been widely used in civil and automotive industries.

The nonlinear behavior of MR fluid makes MR damper modeling a challenging problem.

In this paper, a frequency dependent MR damper model is proposed based on Spencer MR damper model.

The parameters of the model are identified using an experimental data based hybrid optimization approach which is a combination of Genetic Algorithm and Sequential Quadratic Programming approach.

The frequency in the proposed model is calculated using measured relative velocity and relative displacement between MR damper ends.

Therefore, the MR damper model will be function of frequency.

The mathematical model is validated using the experimental results which confirm the improvement in the accuracy of the model and consistency in the variation damping with the frequency.

American Psychological Association (APA)

Fellah Jahromi, Ali& Bhat, Rama B.& Xie, Wen-Fang. 2015. Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach. Shock and Vibration،Vol. 2015, no. 2015, pp.1-8.
https://search.emarefa.net/detail/BIM-1078097

Modern Language Association (MLA)

Fellah Jahromi, Ali…[et al.]. Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach. Shock and Vibration No. 2015 (2015), pp.1-8.
https://search.emarefa.net/detail/BIM-1078097

American Medical Association (AMA)

Fellah Jahromi, Ali& Bhat, Rama B.& Xie, Wen-Fang. Frequency Dependent Spencer Modeling of Magnetorheological Damper Using Hybrid Optimization Approach. Shock and Vibration. 2015. Vol. 2015, no. 2015, pp.1-8.
https://search.emarefa.net/detail/BIM-1078097

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1078097