Substructural Identification of Flexural Rigidity for Beam-Like Structures

Joint Authors

Koo, Ki-Young
Yi, Jin-Hak

Source

Shock and Vibration

Issue

Vol. 2015, Issue 2015 (31 Dec. 2015), pp.1-15, 15 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-03-02

Country of Publication

Egypt

No. of Pages

15

Main Subjects

Civil Engineering

Abstract EN

This study proposes a novel substructural identification method based on the Bernoulli-Euler beam theory with a single variable optimization scheme to estimate the flexural rigidity of a beam-like structure such as a bridge deck, which is one of the major structural integrity indices of a structure.

In ordinary bridges, the boundary condition of a superstructure can be significantly altered by aging and environmental variations, and the actual boundary conditions are generally unknown or difficult to be estimated correctly.

To efficiently bypass the problems related to boundary conditions, a substructural identification method is proposed to evaluate the flexural rigidity regardless of the actual boundary conditions by isolating an identification region within the internal substructure.

The proposed method is very simple and effective as it utilizes the single variable optimization based on the transfer function formulated utilizing Bernoulli Euler beam theory for the inverse analysis to obtain the flexural rigidity.

This novel method is also rigorously investigated by applying it for estimating the flexural rigidity of a simply supported beam model with different boundary conditions, a concrete plate-girder bridge model with different length of an internal substructure, a cantilever-type wind turbine tower structure with different type of excitation, and a steel box-girder bridge model with internal structural damages.

American Psychological Association (APA)

Koo, Ki-Young& Yi, Jin-Hak. 2015. Substructural Identification of Flexural Rigidity for Beam-Like Structures. Shock and Vibration،Vol. 2015, no. 2015, pp.1-15.
https://search.emarefa.net/detail/BIM-1078317

Modern Language Association (MLA)

Koo, Ki-Young& Yi, Jin-Hak. Substructural Identification of Flexural Rigidity for Beam-Like Structures. Shock and Vibration No. 2015 (2015), pp.1-15.
https://search.emarefa.net/detail/BIM-1078317

American Medical Association (AMA)

Koo, Ki-Young& Yi, Jin-Hak. Substructural Identification of Flexural Rigidity for Beam-Like Structures. Shock and Vibration. 2015. Vol. 2015, no. 2015, pp.1-15.
https://search.emarefa.net/detail/BIM-1078317

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1078317