Intelligent Flow Friction Estimation

Joint Authors

Brkić, Dejan
Ćojbašić, Žarko

Source

Computational Intelligence and Neuroscience

Issue

Vol. 2016, Issue 2016 (31 Dec. 2015), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2016-04-03

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Biology

Abstract EN

Nowadays, the Colebrook equation is used as a mostly accepted relation for the calculation of fluid flow friction factor.

However, the Colebrook equation is implicit with respect to the friction factor ( λ ).

In the present study, a noniterative approach using Artificial Neural Network (ANN) was developed to calculate the friction factor.

To configure the ANN model, the input parameters of the Reynolds Number (Re) and the relative roughness of pipe ( ε / D ) were transformed to logarithmic scales.

The 90,000 sets of data were fed to the ANN model involving three layers: input, hidden, and output layers with, 2, 50, and 1 neurons, respectively.

This configuration was capable of predicting the values of friction factor in the Colebrook equation for any given values of the Reynolds number (Re) and the relative roughness ( ε / D ) ranging between 5000 and 108 and between 10−7 and 0.1, respectively.

The proposed ANN demonstrates the relative error up to 0.07% which had the high accuracy compared with the vast majority of the precise explicit approximations of the Colebrook equation.

American Psychological Association (APA)

Brkić, Dejan& Ćojbašić, Žarko. 2016. Intelligent Flow Friction Estimation. Computational Intelligence and Neuroscience،Vol. 2016, no. 2016, pp.1-10.
https://search.emarefa.net/detail/BIM-1099698

Modern Language Association (MLA)

Brkić, Dejan& Ćojbašić, Žarko. Intelligent Flow Friction Estimation. Computational Intelligence and Neuroscience Vol. 2016, no. 2016 (2015), pp.1-10.
https://search.emarefa.net/detail/BIM-1099698

American Medical Association (AMA)

Brkić, Dejan& Ćojbašić, Žarko. Intelligent Flow Friction Estimation. Computational Intelligence and Neuroscience. 2016. Vol. 2016, no. 2016, pp.1-10.
https://search.emarefa.net/detail/BIM-1099698

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1099698