Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers

Joint Authors

Munoz, Pablo
Lobos, Pedro
Bruna, Barbara
Cordova, Alex
Barattini, Pablo
Galáz, Jose Luis
Adasme, Tatiana
Hidalgo, Cecilia
Paula-Lima, Andrea

Source

Neural Plasticity

Issue

Vol. 2016, Issue 2016 (31 Dec. 2016), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2016-03-01

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Biology
Medicine

Abstract EN

Increased reactive oxygen species (ROS) generation and the ensuing oxidative stress contribute to Alzheimer’s disease pathology.

We reported previously that amyloid-β peptide oligomers (AβOs) produce aberrant Ca2+ signals at sublethal concentrations and decrease the expression of type-2 ryanodine receptors (RyR2), which are crucial for hippocampal synaptic plasticity and memory.

Here, we investigated whether the antioxidant agent astaxanthin (ATX) protects neurons from AβOs-induced excessive mitochondrial ROS generation, NFATc4 activation, and RyR2 mRNA downregulation.

To determine mitochondrial H2O2 production or NFATc4 nuclear translocation, neurons were transfected with plasmids coding for HyperMito or NFATc4-eGFP, respectively.

Primary hippocampal cultures were incubated with 0.1 μM ATX for 1.5 h prior to AβOs addition (500 nM).

We found that incubation with ATX (≤10 μM) for ≤24 h was nontoxic to neurons, evaluated by the live/dead assay.

Preincubation with 0.1 μM ATX also prevented the neuronal mitochondrial H2O2 generation induced within minutes of AβOs addition.

Longer exposures to AβOs (6 h) promoted NFATc4-eGFP nuclear translocation and decreased RyR2 mRNA levels, evaluated by detection of the eGFP-tagged fluorescent plasmid and qPCR, respectively.

Preincubation with 0.1 μM ATX prevented both effects.

These results indicate that ATX protects neurons from the noxious effects of AβOs on mitochondrial ROS production, NFATc4 activation, and RyR2 gene expression downregulation.

American Psychological Association (APA)

Lobos, Pedro& Bruna, Barbara& Cordova, Alex& Barattini, Pablo& Galáz, Jose Luis& Adasme, Tatiana…[et al.]. 2016. Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers. Neural Plasticity،Vol. 2016, no. 2016, pp.1-13.
https://search.emarefa.net/detail/BIM-1113078

Modern Language Association (MLA)

Lobos, Pedro…[et al.]. Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers. Neural Plasticity No. 2016 (2016), pp.1-13.
https://search.emarefa.net/detail/BIM-1113078

American Medical Association (AMA)

Lobos, Pedro& Bruna, Barbara& Cordova, Alex& Barattini, Pablo& Galáz, Jose Luis& Adasme, Tatiana…[et al.]. Astaxanthin Protects Primary Hippocampal Neurons against Noxious Effects of Aβ-Oligomers. Neural Plasticity. 2016. Vol. 2016, no. 2016, pp.1-13.
https://search.emarefa.net/detail/BIM-1113078

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1113078