Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease

Joint Authors

Rubattu, Speranza
Stanzione, Rosita
Volpe, Massimo

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2016, Issue 2016 (31 Dec. 2016), pp.1-10, 10 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2016-08-09

Country of Publication

Egypt

No. of Pages

10

Main Subjects

Biology

Abstract EN

Mechanisms underlying hypertensive target organ damage (TOD) are not completely understood.

The pathophysiological role of mitochondrial oxidative stress, resulting from mitochondrial dysfunction, in development of TOD is unclear.

The stroke-prone spontaneously hypertensive rat (SHRSP) is a suitable model of human hypertension and of its vascular consequences.

Pathogenesis of TOD in SHRSP is multifactorial, being determined by high blood pressure levels, high salt/low potassium diet, and genetic factors.

Accumulating evidence points to a key role of mitochondrial dysfunction in increased susceptibility to TOD development of SHRSP.

Mitochondrial abnormalities were described in both heart and brain of SHRSP.

Pharmacological compounds able to protect mitochondrial function exerted a significant protective effect on TOD development, independently of blood pressure levels.

Through our research efforts, we discovered that two genes encoding mitochondrial proteins, one (Ndufc2) involved in OXPHOS complex I assembly and activity and the second one (UCP2) involved in clearance of mitochondrial ROS, are responsible, when dysregulated, for vascular damage in SHRSP.

The suitability of SHRSP as a model of human disease represents a promising background for future translation of the experimental findings to human hypertension.

Novel therapeutic strategies toward mitochondrial molecular targets may become a valuable tool for prevention and treatment of TOD in human hypertension.

American Psychological Association (APA)

Rubattu, Speranza& Stanzione, Rosita& Volpe, Massimo. 2016. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. Oxidative Medicine and Cellular Longevity،Vol. 2016, no. 2016, pp.1-10.
https://search.emarefa.net/detail/BIM-1113589

Modern Language Association (MLA)

Rubattu, Speranza…[et al.]. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. Oxidative Medicine and Cellular Longevity No. 2016 (2016), pp.1-10.
https://search.emarefa.net/detail/BIM-1113589

American Medical Association (AMA)

Rubattu, Speranza& Stanzione, Rosita& Volpe, Massimo. Mitochondrial Dysfunction Contributes to Hypertensive Target Organ Damage: Lessons from an Animal Model of Human Disease. Oxidative Medicine and Cellular Longevity. 2016. Vol. 2016, no. 2016, pp.1-10.
https://search.emarefa.net/detail/BIM-1113589

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1113589