Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways

Joint Authors

Osaki, Juliana Harumi
Espinha, Gisele
Magalhaes, Yuli T.
Forti, F. L.

Source

Oxidative Medicine and Cellular Longevity

Issue

Vol. 2016, Issue 2016 (31 Dec. 2016), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-11-15

Country of Publication

Egypt

No. of Pages

11

Main Subjects

Biology

Abstract EN

Radiotherapy with γ-radiation is widely used in cancer treatment to induce DNA damage reducing cell proliferation and to kill tumor cells.

Although RhoA GTPase overexpression/hyperactivation is observed in many malignancies, the effect of RhoA activity modulation on cancer radiosensitivity has not been previously investigated.

Here, we generated stable HeLa cell clones expressing either the dominant negative RhoA-N19 or the constitutively active RhoA-V14 and compared the responses of these cell lines with those of parental HeLa cells, after treatment with low doses of γ-radiation.

HeLa-RhoA-N19 and HeLa-RhoA-V14 clones displayed reduced proliferation and survival compared to parental cells after radiation and became arrested at cell cycle stages correlated with increased cellular senescence and apoptosis.

Also, Chk1/Chk2 and histone H2A phosphorylation data, as well as comet assays, suggest that the levels of DNA damage and DNA repair activation and efficiency in HeLa cell lines are correlated with active RhoA.

In agreement with these results, RhoA inhibition by C3 toxin expression drastically affected homologous recombination (HR) and nonhomologous end joining (NHEJ).

These data suggest that modulation of RhoA GTPase activity impairs DNA damage repair, increasing HeLa cell radiosensitivity.

American Psychological Association (APA)

Osaki, Juliana Harumi& Espinha, Gisele& Magalhaes, Yuli T.& Forti, F. L.. 2015. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways. Oxidative Medicine and Cellular Longevity،Vol. 2016, no. 2016, pp.1-11.
https://search.emarefa.net/detail/BIM-1114074

Modern Language Association (MLA)

Osaki, Juliana Harumi…[et al.]. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways. Oxidative Medicine and Cellular Longevity No. 2016 (2016), pp.1-11.
https://search.emarefa.net/detail/BIM-1114074

American Medical Association (AMA)

Osaki, Juliana Harumi& Espinha, Gisele& Magalhaes, Yuli T.& Forti, F. L.. Modulation of RhoA GTPase Activity Sensitizes Human Cervix Carcinoma Cells to γ-Radiation by Attenuating DNA Repair Pathways. Oxidative Medicine and Cellular Longevity. 2015. Vol. 2016, no. 2016, pp.1-11.
https://search.emarefa.net/detail/BIM-1114074

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1114074