NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation

Joint Authors

Hessmann, Elisabeth
Zhang, Jin-San
Chen, Nai-Ming
Hasselluhn, Marie
Liou, Geou-Yarh
Ellenrieder, Volker
Billadeau, Daniel D.
Koenig, Alexander
Storz, P.

Source

Stem Cells International

Issue

Vol. 2016, Issue 2016 (31 Dec. 2015), pp.1-11, 11 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2015-11-30

Country of Publication

Egypt

No. of Pages

11

Abstract EN

Acinar transdifferentiation toward a duct-like phenotype constitutes the defining response of acinar cells to external stress signals and is considered to be the initial step in pancreatic carcinogenesis.

Despite the requirement for oncogenic Kras in pancreatic cancer (PDAC) development, oncogenic Kras is not sufficient to drive pancreatic carcinogenesis beyond the level of premalignancy.

Instead, secondary events, such as inflammation-induced signaling activation of the epidermal growth factor (EGFR) or induction of Sox9 expression, are required for tumor formation.

Herein, we aimed to dissect the mechanism that links EGFR signaling to Sox9 gene expression during acinar-to-ductal metaplasia in pancreatic tissue adaptation and PDAC initiation.

We show that the inflammatory transcription factor NFATc4 is highly induced and localizes in the nucleus in response to inflammation-induced EGFR signaling.

Moreover, we demonstrate that NFATc4 drives acinar-to-ductal conversion and PDAC initiation through direct transcriptional induction of Sox9.

Therefore, strategies designed to disrupt NFATc4 induction might be beneficial in the prevention or therapy of PDAC.

American Psychological Association (APA)

Hessmann, Elisabeth& Zhang, Jin-San& Chen, Nai-Ming& Hasselluhn, Marie& Liou, Geou-Yarh& Storz, P.…[et al.]. 2015. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells International،Vol. 2016, no. 2016, pp.1-11.
https://search.emarefa.net/detail/BIM-1116724

Modern Language Association (MLA)

Hessmann, Elisabeth…[et al.]. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells International Vol. 2016, no. 2016 (2015), pp.1-11.
https://search.emarefa.net/detail/BIM-1116724

American Medical Association (AMA)

Hessmann, Elisabeth& Zhang, Jin-San& Chen, Nai-Ming& Hasselluhn, Marie& Liou, Geou-Yarh& Storz, P.…[et al.]. NFATc4 Regulates Sox9 Gene Expression in Acinar Cell Plasticity and Pancreatic Cancer Initiation. Stem Cells International. 2015. Vol. 2016, no. 2016, pp.1-11.
https://search.emarefa.net/detail/BIM-1116724

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1116724