Effect of Substrate Temperature on the Microstructural, Morphological, and Optical Properties of Electrosprayed ZnO Thin Films

Joint Authors

Vasileva, Marina
Babeva, Tsvetanka
Marinov, Georgi
Strijkova, Velichka
Madjarova, Violeta
Malinowski, Nikola

Source

Advances in Condensed Matter Physics

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-7, 7 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-05-08

Country of Publication

Egypt

No. of Pages

7

Main Subjects

Physics

Abstract EN

Polycrystalline ZnO thin films were prepared on silicon substrates using electrospray method with vertical setup.

Water and ethanol were used as solvents for zinc acetate dehydrate and no postdeposition annealing was required for formation of ZnO.

The influence of substrate temperature in the range of 150–250°C on surface morphology and roughness was studied by Scanning Electron Microscopy (SEM), Atomic Force Microscopy (AFM), and optical profilometry.

An improvement of surface quality and smoothing of the films with temperature were obtained.

X-ray diffraction measurements revealed that, at all investigated substrate temperatures, the films were polycrystalline with crystallites’ sizes decreasing with temperature.

Besides, the preferred crystal orientation varies with the substrate temperature.

The analysis of surface chemical composition and oxidation state was performed with X-ray photoelectron spectroscopy (XPS).

It was shown that, at substrate temperature of 200°C, the deposited ZnO films were closest to the stoichiometric ones.

In general, the films at 150°C were oxygen-deficient, while at other studied temperatures, the films had excess of oxygen more pronouncedly at 200°C.

Spectral ellipsometric measurements confirmed that the structural disorder is the highest at 150°C and improves with temperature.

Refractive indexes for films at 200°C and 250°C are almost the same, 1.97 and 1.93, respectively, at wavelength of 600 nm, while for the sample deposited at 150°C, the refractive index is substantially lower, 1.67.

The optical band gap is slightly influenced by the substrate temperature: 3.27 eV at 150°C and 3.32 eV at 200°C.

American Psychological Association (APA)

Marinov, Georgi& Strijkova, Velichka& Vasileva, Marina& Madjarova, Violeta& Malinowski, Nikola& Babeva, Tsvetanka. 2018. Effect of Substrate Temperature on the Microstructural, Morphological, and Optical Properties of Electrosprayed ZnO Thin Films. Advances in Condensed Matter Physics،Vol. 2018, no. 2018, pp.1-7.
https://search.emarefa.net/detail/BIM-1117346

Modern Language Association (MLA)

Marinov, Georgi…[et al.]. Effect of Substrate Temperature on the Microstructural, Morphological, and Optical Properties of Electrosprayed ZnO Thin Films. Advances in Condensed Matter Physics No. 2018 (2018), pp.1-7.
https://search.emarefa.net/detail/BIM-1117346

American Medical Association (AMA)

Marinov, Georgi& Strijkova, Velichka& Vasileva, Marina& Madjarova, Violeta& Malinowski, Nikola& Babeva, Tsvetanka. Effect of Substrate Temperature on the Microstructural, Morphological, and Optical Properties of Electrosprayed ZnO Thin Films. Advances in Condensed Matter Physics. 2018. Vol. 2018, no. 2018, pp.1-7.
https://search.emarefa.net/detail/BIM-1117346

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1117346