Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration

Joint Authors

Tian, Jing
Liu, Suhua
Yang, Lijun
Liang, Hong
Su, Hongbo
Zhang, Renhua
Wang, Weimin
Chen, Shaohui

Source

Advances in Meteorology

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-01-14

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Physics

Abstract EN

Evapotranspiration (ET) is a significant component in the water cycle, and the estimation of it is imperative in water resource management.

Regional ET can be derived by using remote sensing technology which combines remote sensing inputs with ground-based measurements.

However, instantaneous ET values estimated through remote sensing directly need to be converted into daily totals.

In this study, we attempted to retrieve daily ET from remotely sensed instantaneous ET.

The study found that the Gaussian fitting curve closely followed the ET measurements during the daytime and hence put forward the Gaussian fitting method to convert the remotely sensed instantaneous ET into daily ETs.

The method was applied to the middle reaches of Heihe River in China.

Daily ETs on four days were derived and evaluated with ET measurements from the eddy covariance (EC) system.

The correlation between daily ET estimates and measurements showed high accuracy, with a coefficient of determination (R2) of 0.82, a mean average error (MAE) of 0.41 mm, and a root mean square error (RMSE) of 0.46 mm.

To make more scientific assessments, percent errors were calculated on the estimation accuracy, which ranged from 0% to 18%, with more than 80% of locations having the percent errors within 10%.

Analyses on the relationship between daily ET estimates and land use status were also made to assess the Gaussian fitting method, and the results showed that the spatial distribution of daily ET estimates well demonstrated ET differences caused by land use types and was intimately linked with the vegetation pattern.

The comparison between the Gaussian fitting method and the sine function method and the ETrF method indicated that results derived through the Gaussian fitting method had higher precision than that obtained by the sine function method and the ETrF method.

American Psychological Association (APA)

Liu, Suhua& Su, Hongbo& Zhang, Renhua& Tian, Jing& Chen, Shaohui& Wang, Weimin…[et al.]. 2019. Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration. Advances in Meteorology،Vol. 2019, no. 2019, pp.1-13.
https://search.emarefa.net/detail/BIM-1118720

Modern Language Association (MLA)

Liu, Suhua…[et al.]. Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration. Advances in Meteorology No. 2019 (2019), pp.1-13.
https://search.emarefa.net/detail/BIM-1118720

American Medical Association (AMA)

Liu, Suhua& Su, Hongbo& Zhang, Renhua& Tian, Jing& Chen, Shaohui& Wang, Weimin…[et al.]. Based on the Gaussian Fitting Method to Derive Daily Evapotranspiration from Remotely Sensed Instantaneous Evapotranspiration. Advances in Meteorology. 2019. Vol. 2019, no. 2019, pp.1-13.
https://search.emarefa.net/detail/BIM-1118720

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1118720