Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function

Author

Xu, Qian

Source

Shock and Vibration

Issue

Vol. 2016, Issue 2016 (31 Dec. 2016), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2016-08-25

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Civil Engineering

Abstract EN

To eliminate the influence of excitation on the wavelet packet frequency band energy spectrum (ES), ES is acquired via wavelet packet decomposition of a virtual impulse response function.

Based on ES, a character frequency band vector spectrum and damage eigenvector spectrum (DES) are created.

Additionally, two damage identification indexes, the energy ratio standard deviation and energy ratio variation coefficient, are proposed.

Based on the damage index, an updated damage identification method for retaining wall structures is advanced.

The damage state of a retaining wall can be diagnosed through DES, the damage location can be detected through the damage index trend surface, and the damage intensity can be identified by establishing a quantitative relationship between the damage intensity and damage index.

To verify the feasibility and validity of this damage identification method, a vibration test on a pile plate retaining wall is performed.

Test results demonstrate that it can distinguish whether the retaining wall is damaged, and the location of partial damage within the retaining wall can be easily detected; in addition, the damage intensity of the wall can also be identified validly.

Consequently, this damage identification theory and method may be used to identify damage within retaining wall structures.

American Psychological Association (APA)

Xu, Qian. 2016. Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function. Shock and Vibration،Vol. 2016, no. 2016, pp.1-13.
https://search.emarefa.net/detail/BIM-1118797

Modern Language Association (MLA)

Xu, Qian. Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function. Shock and Vibration No. 2016 (2016), pp.1-13.
https://search.emarefa.net/detail/BIM-1118797

American Medical Association (AMA)

Xu, Qian. Damage Identification Investigation of Retaining Wall Structures Based on a Virtual Impulse Response Function. Shock and Vibration. 2016. Vol. 2016, no. 2016, pp.1-13.
https://search.emarefa.net/detail/BIM-1118797

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1118797