Effect of the NonprestressedPrestressed BFRP Bar on Flexural Performance of the Bamboo Beam

Joint Authors

Lv, Qingfang
Liu, Ye
Ding, Yi

Source

Advances in Polymer Technology

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-13, 13 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-10-09

Country of Publication

Egypt

No. of Pages

13

Main Subjects

Chemistry

Abstract EN

Until now, the systematical and comprehensive strengthening techniques have not been formed for the bamboo structure.

Under such background, this paper aims to explore the effects of the application of the nonprestressed and prestressed basalt fiber-reinforced polymer (BFRP) bars on the flexural performance of the beams made of the laminated bamboo and reconstituted bamboo materials.

Two series of four-point bending tests were thus conducted.

In the first series of tests, the pure laminated bamboo beam and the laminated bamboo beam applied with nonprestressed BFRP bar were compared.

Test results showed that the ultimate load and deformation capacity of the laminated bamboo beam was improved due to the existence of the BFRP bar.

In the second series of tests, the reconstituted bamboo beams applied with nonprestressed and prestressed BFRP bars were compared.

It is found that the ultimate load of the reconstituted bamboo beam was not improved by the application of the prestressed force.

The further analysis related to the prestress loss demonstrated that the prestress loss before the release of the prestressed BFRP bar could reach up to 31.8–37.3% compared with the design initial prestressed stress.

The prestress loss caused by the elastic deformation of the bamboo beam can be neglected.

For all tested specimens, the plane section assumption was acceptable and the position of the neutral axis of the beam gradually moved down with the increase of the applied load.

American Psychological Association (APA)

Lv, Qingfang& Ding, Yi& Liu, Ye. 2019. Effect of the NonprestressedPrestressed BFRP Bar on Flexural Performance of the Bamboo Beam. Advances in Polymer Technology،Vol. 2019, no. 2019, pp.1-13.
https://search.emarefa.net/detail/BIM-1122096

Modern Language Association (MLA)

Lv, Qingfang…[et al.]. Effect of the NonprestressedPrestressed BFRP Bar on Flexural Performance of the Bamboo Beam. Advances in Polymer Technology No. 2019 (2019), pp.1-13.
https://search.emarefa.net/detail/BIM-1122096

American Medical Association (AMA)

Lv, Qingfang& Ding, Yi& Liu, Ye. Effect of the NonprestressedPrestressed BFRP Bar on Flexural Performance of the Bamboo Beam. Advances in Polymer Technology. 2019. Vol. 2019, no. 2019, pp.1-13.
https://search.emarefa.net/detail/BIM-1122096

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1122096