Muscle Atrophy Marker Expression Differs between Rotary Cell Culture System and Animal Studies

Joint Authors

Vargis, Elizabeth
Harding, Charles P.

Source

BioMed Research International

Issue

Vol. 2019, Issue 2019 (31 Dec. 2019), pp.1-12, 12 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2019-02-17

Country of Publication

Egypt

No. of Pages

12

Main Subjects

Medicine

Abstract EN

Muscular atrophy, defined as the loss of muscle tissue, is a serious issue for immobilized patients on Earth and for humans during spaceflight, where microgravity prevents normal muscle loading.

In vitro modeling is an important step in understanding atrophy mechanisms and testing countermeasures before animal trials.

The most ideal environment for modeling must be empirically determined to best mimic known responses in vivo.

To simulate microgravity conditions, murine C2C12 myoblasts were cultured in a rotary cell culture system (RCCS).

Alginate encapsulation was compared against polystyrene microcarrier beads as a substrate for culturing these adherent muscle cells.

Changes after culture under simulated microgravity were characterized by assessing mRNA expression of MuRF1, MAFbx, Caspase 3, Akt2, mTOR, Ankrd1, and Foxo3.

Protein concentration of myosin heavy chain 4 (Myh4) was used as a differentiation marker.

Cell morphology and substrate structure were evaluated with brightfield and fluorescent imaging.

Differentiated C2C12 cells encapsulated in alginate had a significant increase in MuRF1 only following simulated microgravity culture and were morphologically dissimilar to normal cultured muscle tissue.

On the other hand, C2C12 cells cultured on polystyrene microcarriers had significantly increased expression of MuRF1, Caspase 3, and Foxo3 and easily identifiable multinucleated myotubes.

The extent of differentiation was higher in simulated microgravity and protein synthesis more active with increased Myh4, Akt2, and mTOR.

The in vitro microcarrier model described herein significantly increases expression of several of the same atrophy markers as in vivo models.

However, unlike animal models, MAFbx and Ankrd1 were not significantly increased and the fold change in MuRF1 and Foxo3 was lower than expected.

Using a standard commercially available RCCS, the substrates and culture methods described only partially model changes in mRNAs associated with atrophy in vivo.

American Psychological Association (APA)

Harding, Charles P.& Vargis, Elizabeth. 2019. Muscle Atrophy Marker Expression Differs between Rotary Cell Culture System and Animal Studies. BioMed Research International،Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1123629

Modern Language Association (MLA)

Harding, Charles P.& Vargis, Elizabeth. Muscle Atrophy Marker Expression Differs between Rotary Cell Culture System and Animal Studies. BioMed Research International No. 2019 (2019), pp.1-12.
https://search.emarefa.net/detail/BIM-1123629

American Medical Association (AMA)

Harding, Charles P.& Vargis, Elizabeth. Muscle Atrophy Marker Expression Differs between Rotary Cell Culture System and Animal Studies. BioMed Research International. 2019. Vol. 2019, no. 2019, pp.1-12.
https://search.emarefa.net/detail/BIM-1123629

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1123629