Finite Element Analysis of Different Double-Plate Angles in the Treatment of the Femoral Shaft Nonunion with No Cortical Support opposite the Primary Lateral Plate

Joint Authors

Li, Jiantao
Zhang, Hao
Zhou, Jianfeng
Li, Chen
Tang, Peifu
Zhang, Wei
Hao, Ming
Li, Lianting
Wang, Kun
Xu, Gaoxiang

Source

BioMed Research International

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-8, 8 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-07-31

Country of Publication

Egypt

No. of Pages

8

Main Subjects

Medicine

Abstract EN

Objectives.

We evaluated the biomechanical outcome of different plate fixation strategies (the single plate construct, 45° double-plate construct, 90° double-plate construct, 135° double-plate construct, and 180° double-plate construct) used for the fixation of the femoral shaft nonunion with no cortical support opposite the primary lateral plate.

This may help surgeons choose the optimal therapy to the femoral shaft nonunion.

Methods.

The femoral shaft nonunion with no medial support and the models of lateral plate and medial plate was constructed in 3-matic software and UG-NX software, respectively.

We then assembled the single plate and different double plates to the fracture model separately to form the fixation models.

After meshing the models’ elements, we used the ABAQUS software to perform the finite element analysis.

Values of the von Mises Stress (VMS) distribution of the implant, peak VMS, and model displacement and deformation were used to capture the mechanical factors in this study.

Results.

Our results indicated that the peak von Mises Stress (VMS) of the lateral plate was concentrated in middle surface of the lateral plate near the fragment of each group.

The peak VMS was 5201.0 MPa (the single-plate construct), 3490.0 MPa (45° double-plate construct), 1754.0 MPa (90° double-plate construct), 1123.0 MPa (135° double-plate construct), and 816.5 MPa (180° double-plate construct).

The additional short plate dispersed some stress leading to the decrease in the peak VMS of the lateral plate.

As angle formed by the double plates increased, the dispersed function of the additional plate was becoming obvious.

The bending angles of the lateral plate were 18° versus 12° versus 3° versus 2° versus 1° (the single-plate construct versus 45° double-plate construct versus 90° double-plate construct versus 135° double-plate construct versus 180° double-plate construct).

Conclusions.

Our study indicated that increasing the angle between the plates in a double-plate construct improves the stability of the construct over a single lateral plate when there is no cortical support opposite to the lateral plate.

The strongest fixation occurred when the angle between the two plates was greater than ninety degrees.

American Psychological Association (APA)

Zhang, Hao& Li, Jiantao& Zhou, Jianfeng& Li, Lianting& Hao, Ming& Wang, Kun…[et al.]. 2018. Finite Element Analysis of Different Double-Plate Angles in the Treatment of the Femoral Shaft Nonunion with No Cortical Support opposite the Primary Lateral Plate. BioMed Research International،Vol. 2018, no. 2018, pp.1-8.
https://search.emarefa.net/detail/BIM-1125756

Modern Language Association (MLA)

Zhang, Hao…[et al.]. Finite Element Analysis of Different Double-Plate Angles in the Treatment of the Femoral Shaft Nonunion with No Cortical Support opposite the Primary Lateral Plate. BioMed Research International No. 2018 (2018), pp.1-8.
https://search.emarefa.net/detail/BIM-1125756

American Medical Association (AMA)

Zhang, Hao& Li, Jiantao& Zhou, Jianfeng& Li, Lianting& Hao, Ming& Wang, Kun…[et al.]. Finite Element Analysis of Different Double-Plate Angles in the Treatment of the Femoral Shaft Nonunion with No Cortical Support opposite the Primary Lateral Plate. BioMed Research International. 2018. Vol. 2018, no. 2018, pp.1-8.
https://search.emarefa.net/detail/BIM-1125756

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1125756