Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers

Joint Authors

Yang, San-Nan
Yang, Yu-Chen S. H.
Wu, Pei-Ling
Yang, Yung-Ning
Suen, Jau-Ling
Yang, Chun-Hwa

Source

BioMed Research International

Issue

Vol. 2018, Issue 2018 (31 Dec. 2018), pp.1-9, 9 p.

Publisher

Hindawi Publishing Corporation

Publication Date

2018-06-10

Country of Publication

Egypt

No. of Pages

9

Main Subjects

Medicine

Abstract EN

Prenatal exposure to morphine causes altered glutamatergic neurotransmission, which plays an important pathophysiological role for neurobiological basis of opiate-mediated behaviors in such offspring.

However, it is still not clear whether such alteration involves gene expression of ionotropic glutamate receptor subunits.

In this study, we further studied whether prenatal morphine exposure resulted in long-term changes in the gene expression of α-amino-3-hydroxy-5-methyl-4-isoxazolepropionic acid (AMPA) receptor, N-methyl-d-aspartate (NMDA) receptor, and postsynaptic density 95 in the mesocorticolimbic area (an essential integration circuitry for drug craving behavior), nucleus accumbens (NAc), ventral tegmental area (VTA), and prefrontal cortex (PFC), of rat offspring from morphine-addicted mothers.

Experimental results showed that prenatal morphine exposure led to a persistent downregulation of gene expression in the AMPA and NMDA receptor subunit, with a differential manner of decreased magnitudes, at the age of postnatal days 14 (P14) and P30.

However, in PFC, the gene expression of the AMPA receptor subunit was not synchronized in observed rat offspring subjected to prenatal morphine exposure.

An upregulation of gene expression in the AMPA receptor subunit 3 (GluR3) was persistently observed at P14 and P30.

Furthermore, the gene expressions of PSD-95 in NAc, VTA, and PFC were all decreased concurrently.

Collectively, the results suggest that prenatal exposure to morphine may initiate molecular mechanisms leading to a long-lasting, differential alteration in gene expression of the inotropic glutamate receptor subunit and PSD-95 in the mesocorticolimbic circuitry in rat offspring.

This study raises a possibility in which differential changes in gene expression with a long-lasting manner may play a role for the development of nearly permanent changes in opiate-mediated behaviors, at least in part for the neurobiological pathogenesis in offspring.

American Psychological Association (APA)

Wu, Pei-Ling& Yang, Yung-Ning& Suen, Jau-Ling& Yang, Yu-Chen S. H.& Yang, Chun-Hwa& Yang, San-Nan. 2018. Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers. BioMed Research International،Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1127306

Modern Language Association (MLA)

Wu, Pei-Ling…[et al.]. Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers. BioMed Research International No. 2018 (2018), pp.1-9.
https://search.emarefa.net/detail/BIM-1127306

American Medical Association (AMA)

Wu, Pei-Ling& Yang, Yung-Ning& Suen, Jau-Ling& Yang, Yu-Chen S. H.& Yang, Chun-Hwa& Yang, San-Nan. Long-Lasting Alterations in Gene Expression of Postsynaptic Density 95 and Inotropic Glutamatergic Receptor Subunit in the Mesocorticolimbic System of Rat Offspring Born to Morphine-Addicted Mothers. BioMed Research International. 2018. Vol. 2018, no. 2018, pp.1-9.
https://search.emarefa.net/detail/BIM-1127306

Data Type

Journal Articles

Language

English

Notes

Includes bibliographical references

Record ID

BIM-1127306